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Abstract 

This dissertation was written as a part of the MSc in ICT Systems at the International 

Hellenic University. Its main goal is the examination of the role of human personality in 

Movie Recommender systems. We introduce the concept of combining collaborative 

techniques with a personality test so to provide more personalized movie 

recommendations.   

Previous research has shown some efforts to incorporate personality in Recommender 

systems, but no actual implementation has been attempted on a software level. Using a 

renowned movie dataset and the Big Five Personality test, we developed a system with 

Python that managed to improve the normal Movie Recommendation experience by 

3.62%. 

The findings show that Personalization improves the user’s experience even though 

extra effort might be demanded. With further modifications and testing, we can come to 

the new age of recommender systems, where personality of the user is as important as it 

is in real life. 

I would like to thank my supervisor Dr. Christos Tjortjis for his guidance and his 

excellent ideas and additions to this Dissertation. 
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1 Introduction 

 

The last few years, the massive growth and impact of the World Wide Web had as an 

immediate result the handling and distribution of huge amounts of data and information. 

It also made it easier for the average user to access this information and use it for his 

own needs. 

Although this may seem as a huge improvement for computer technology, it certainly 

came with some drawbacks. Now, all these data had to be stored somewhere to be 

maintained. This, in conjunction with the fact that the data kept growing and getting 

bigger, made it really difficult for the average user to sort and process the databases and 

extract useful information. In order for the user to be able to use the data and fulfill his 

needs, a lot of time and effort is demanded. 

This is where a recommender system comes in place.  In a few words, a recommender 

system is an assistive device that directs and guides the user in his search for useful 

information. This system is the mean for the user to avoid all this effort of endless hours 

of searching and organizing the data and information. 

1.1 History Of Recommender Systems 
The very first recommender system came in the late 70’s which is fairly early in the 

history of computers. The name of the recommender was Grundy and it was a system 

used for a library with the main goal of suggesting novels to people who are first 

organized into different stereotypes. It was pretty impressive at the time it was designed 

as it incorporated the personalities and goals of all the distinct users before making the 

recommendations. 

Later, in the early 90’s we saw the rise of collaborative filtering which came as a 

solution to the huge overload in data. One of the first systems that used collaborative 

filtering was Tapestry which allowed users to search for items in an information 

domain, based on opinions of other users.  
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Then, Grouplens, came and introduced automated collaborative filtering 

recommendation systems. Grouplens main goal was to suggest interesting Usenet 

articles by finding similar opinions between different users. The idea is that the active 

user can express whether he likes a Usenet article or not and then the system predicts 

and recommends him articles that he will probably like based on people who share the 

same taste as him. This is what we call the nearest neighbor method and it’s the one that 

we used in this dissertation. 

Collaborative filtering became widely known and this increased the interest in machine 

learning and data mining generally. Various recommender systems were introduced 

such as Bellcore Movie Recommender and Ringo Music Recommender. Furthermore, 

during this time, recommender systems were also applied for marketing situations and 

became really useful for increasing sales and generally reducing the customer effort and 

improving his experience. 

Then the most renowned recommender system came, Amazon. This system is still 

famous today and uses a combination of collaborative and content based filtering 

method with the addition of what the user is currently browsing to make the 

recommendations. 

A big step to the study of recommender systems came in 2006, when Netflix launched 

their Netflix prize competition to improve their movie recommendation algorithm. 

Today, Netflix is considered to have one of the more advanced hybrid recommender 

systems. 

1.2 What Is Exactly A Recommender System? 

An easy definition of a Recommender system is one that implies that it is a system 

which has the abilities to collect and present in each user some documents (in a general 

sense) which belong in his field of interest. This is exactly what we call a 

recommendation, the collection and presentation of useful information to a specific 

user. 

This definition has been expanded by researchers with a great example  mentioned in 

[1], where they state that a recommender system is  “ any system that produces 

individualized recommendations as output or has the effect of guiding the user in a 

personalized way to interesting or useful objects in a large space of possible options” 
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Then [2] made it even more formal stating that “ the recommendation problem can be 

formulated as follows: Let C be the set of all users and let S be the set of all possible 

items that can be recommended. Let u be a utility function that measures the usefulness 

of item s to user c, that is , u:C x S →R, where R is a totally ordered set (for example, 

nonnegative integers or real numbers within a certain range). Then for each user  𝑐 ∈ 𝐶, 

we want to choose such items 𝑠′ ∈ 𝑆 that maximizes the user’s utility”. 

We can clearly see from the above definition that the goal of a recommender system is 

the choice of items with the best correlation and not just to predict the correlations 

between the users and all the different items. 

So from all these definitions we can come to the conclusion about two significant facts 

regarding the recommender systems. First, personalization is an important part of a 

recommender system as its main focus should be the recommendation of specific 

products and services to a particular user and not to represent group consensus for all 

users. Second, the system must know some important information about the user so to 

be able to make recommendations. The user must be present with discrete options, 

including items known in advance and not randomly generated. 

1.3 Recommender Systems Today 

Recommender systems today became a standard for every online store. They play the 

part of the sales person, a sales person that knows all the data or number of products the 

online service offers and knows truly what you like and what you don’t. This comes 

really handy when users have limited time and patience and are not sure what they are 

looking for. Users might be surprised by the fact that recommenders may even suggest 

things that they didn’t even know they liked. 

So, recommendations help online stores and services solve the problem of discovery by 

providing top picks for you, suggestions in the style of “If you like this,  you will also 

like that “ and “if you buy this, you will need that." They do that with the use of huge 

databases that includes what the users browsed, what the users bought, what and when 

they clicked and what they rated. 
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Personalization in recommender systems tends to be a new trend nowadays. It is mostly 

based upon the theory of human-computer interaction which in a few words says that 

computers will and should always work with and for humans. Lately, computer 

scientists try to incorporate human psychological aspects to enhance the above 

interaction by observing how users proceed in recommending a service or an item to 

another person in conventional life. This helps model the human psychology and create 

accurate and efficient strategies for the recommender so that the recommendations are 

more on point and personalized for the user. 

1.4 Motivation 

The main motivation behind this dissertation is the lack of personalization in current 

recommender systems. It is a general concern that was more easily applicable by 

developing a movie recommender system, as there are many databases and metadata on 

movies. Two papers were really inspirational for this Dissertation, [3] and [4]. 

1.5 The Problem 

Even though personalization in recommender systems is something that has been 

studied and researched a lot, the study of personalization based on user’s actual 

personality is something new and unique. We believe that a recommender system must 

know the basic personality traits of the active user and that this will help in the final 

recommendations. Imagine in real life, having one of your close friends suggesting you 

a movie to watch. You might like similar things, and you may respect his taste in 

movies but if he is a calm and shy person in contrast with you being a really active and 

“crazy” person, then maybe you wouldn’t listen to his suggestion and prefer a 

recommendation from a person that has a similar personality to you.  
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1.6 Hypothesis 

 

We believe that in the future, every operating system must have a recommender system 

with a personality test incorporated, that learns the user’s taste and reactions and helps 

both with the operation of the computer and the Internet navigation and the provision of 

services. We also believe that the user must trust the recommender and it will be easier 

to do so if he believes that the recommender “knows” his personality.  

1.7 The Aim 
The aim is first to find an accurate and easy test to examine the user’s personality. Next, 

we aim to find a connection between the personality and the different genres of movies. 

Then we build a normal Knn Movie recommender system and filter its results based 

upon the genre preferences the user has (that were exported from the personality test). 

We then suggest three different sets of recommended movies, one with only the Knn 

suggestions, one with 50% Knn and 50% personality and one with 80% personality and 

20% Knn. The aim is to prove that the 50 % knn and 50 % personality is the one that 

most people prefer as it combines the best of both worlds, recommendations having the 

K nearest neighbors in mind and filtering those recommendations with the user’s 

specific personality (genre preferences). This system is the 50/50 movie recommender 

system. 
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1.8 Dissertation Outline 

This Dissertation is organized as follows: 

1. In the first chapter, we provide a literature review of all the different published 

papers by accredited scholars and researchers. We select the most significant 

and relevant to our subject, mention their strong or weak points, summarize 

their main features in our own wording and explain what we improve and 

where our work fit it in. 

2. In the second chapter, we have the analysis of the most important aspects of 

our dissertation. We explain some important core concepts and introduce the 

reader to the recommender systems. We provide a brief explanation of the 

different types of recommender systems. Furthermore, we provide an 

explanation of the Big Five Personality Test and the human factor in general. 

3. In the third chapter, we provide specific details of the design of the 50/50 

Movie Recommender System. We provide the basic flow charts and briefly 

explain how our recommender works. 

4. In the fourth chapter, we present the implementation of our system in Python 

and the programming techniques used. We provide also a small study of the 

dataset and the interesting information we extract from it. 

5. In the fifth chapter, we provide the results of our Evaluation and final 

conclusions and future work to improve the system. 
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2 LITERATURE REVIEW 

2.1 The Cold-Start Problem 

Collaborative filtering is one of the best approaches to develop a recommender system 

and is the basis of our recommendation engine. As we know, it’s a method that offers 

items to a user, based on items previously rated by other similar users. A big problem 

though is how to make recommendations for a new user, based upon the fact that he 

doesn’t have any items rated and he can’t be clustered with any of the other users. This 

problem is called the cold start problem. 

There are actually many different cold start problems in recommender systems. The 3 

basic types are: dealing with a new user, a new item or even a new recommender system 

from scratch.  The one that we study is dealing with a new user. 

So, the actual problem is that when a new user registers, we simply don’t have a profile, 

meaning we don’t know his preferences. That means that the recommender cannot 

operate as it doesn’t know what to suggest to this user. Now, if the system is not 

personalized, this makes everything easier because now the recommendation engine can 

just present items that are based on what is cheapest, most popular, most viewed and 

generally, whatever the user prefers currently. For example if you visit a mobile phone 

e-shop, you can simply ask to see the top most sold phones currently and the 

recommendation engine will provide this for you. No personalization is required for the 

new user. 
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Now, to personalize the user, there are many things to consider and many ways it can be 

done. First and most simple way is to suggest the most popular items the user is likely 

to be interested in. If for example, in a movie recommender system, a user specifies that 

action movies are his favorite genre, then we provide him with the most popular action 

movies. As the user reacts to these recommendations, the engine gathers the ratings he 

provides and helps personalize the user and make unique recommendations later on. 

This implies that the system learns with the more ratings the user provides but the 

danger of this method is that it turns out to be too biased and domain dependent because 

for example , the recommendation engine might suggest only action movies, something 

that might be confusing and boring for the user. 

Another way is to provide recommendations based on information gathered from other 

websites, or even from the recommender, like country of origin, age, sex etc. This will 

make the clustering much easier and accurate as for example young people tend to 

watch more comedy movies than dramas, so a user that provides all this information is 

more likely to receive a better recommendation. But again this kind of information is so 

open to interpretation that it still is confusing to make accurate recommendations. In 

this dissertation we went a step further and included a personality test so that the 

recommendations are even more personalized. 

Last but not least, one of the most modern methods to treat the cold start problem is to 

integrate information derived from social networks like Facebook, Google Plus etc. 

That way you can build a basis for personalization but many people find this method 

kind of dangerous because you need to provide personal information for it to work, for 

example you have to provide access to your Facebook profile. As we, see later in this 

chapter, this method is not that accurate because the recommendations are based on the 

friends you have on social media and what they like. This is not an easy task as we all 

know that people tend to add many different people on social networks, even people 

that they never met or even know. So that for sure can lead to an inaccurate 

recommendation. 
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All of these methods have two main goals. First, is to get you to use the recommender. 

The other is to push you into some sort of activities like answering questions or picking 

favorite items so that you will provide explicit or implicit ratings and accurate feedback. 

That information will be later user to personalize even further the recommendations that 

the active user gets. The main goal of this dissertation is to be able to provide 

recommendations both by rating some of your favorite movies and by using the Big 

Five personality test because each personality has a different preference and tends to 

like different genres of movies. 

So, there are many solutions that have been studied in the past and in this part of the 

dissertation we will review some papers that helped solving the cold start problem in 

our recommender. 

2.2 Literature On The Cold-Start Problem 

2.2.1 Using social networks to improve movie rating predictions  

In [5], we can see an attempt to start incorporating social media as a way to predict the 

rating of a movie. It suggests the use of user similarity and not the usual item-based 

approach to predict the item preferences of the user. The dataset used is a collection of 

different user ratings and social networks that were provided by Flixster. 

In this approach we have a set of users and movies and a set of training examples. Then 

a matrix is created to represent the Social Media and the interaction between the users. 

If two users are friends on Facebook for example, then the matrix’s appropriate field is 

1 and if they are not friends its 0. 

The statement this paper makes is that if two users are friends on Social Media, then 

they have similar tastes. This is the approach the author uses to treat the Cold Start 

Problem. Specifically, the author states “The premise here is that users who are friends 

with each other will tend to rate similar movies similarly”. This is an overrated 

approach and we can see that also in the conclusion of the paper. 
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The author uses the K-nearest algorithm with the addition of the Social Media 

Friendship similarity. On the following formula, s is the Social Media Friendship 

similarity, sim(u,v) is the similarity measure between two different users u and v and is 

on the range from 0 to 1, w is 1 if u and v are friends and 0 if they are not, and sim(u,v). 

This formula is always close to 1 if the 2 users are friend on Social Media.  

 ( , ) 1 ( , ) xs sim u v sim u v w  
 

Equation 2.1: Social Media Friendship Similarity 

Now, the author treats the Cold Start Problem with the Social Media Similarity in mind 

instead of using the average rating for a movie when a new user enters the system. The 

paper states that the best method is to “use the user’s friends to gather a set of similar 

users from which to take an average rating”. 

As a conclusion, this paper doesn’t produce the desirable results. As we know, the 

effectiveness of an algorithm is based on the value of the Root Mean of Squared Error 

and in this paper the Social Media Friendship Similarity produce a RSME of 1.48 which 

is worse than simply using the k-Nearest Neighbor algorithm 

In this Dissertation, one of the first ideas of dealing with the Cold Start Problem was to 

use Social Media as the previous paper. We believe that asking the user to rate at least 

20 of his favourite movies and using a personality test will be more successful.  

2.2.2 Recommendation of TV shows and movies based on 
Facebook data  

In [6], the authors use specifically Facebook data to help solve the Cold Start Problem 

in recommending movies and TV shows to new users. 

The main point of this paper is that eventhough a recommender might recommend 

popular movies or tv shows to a new user, this is not personalized at all because of the 

fact that if a movie for example is overhyped it doesn’t mean necesseraly  that its 

aprropriate for the specific user. The authors try to solve this problem by looking at a 

person “likes” on Facebook and assume that there is a correlation between the different 

tastes in books, music etc and the users taste in movies or TV shows.  They try two 

different methods, one using unsupervised learning and one using supervised learning. 

In the first method a K-means clustering algorithm is used to cluster the different 

Facebook profiles and then recommend specific movies and TV shows to every 
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different cluster. This simulates real life friend relationship circles because people in the 

same cluster means that are people which are more similar to each other and probably 

sharing similar interests. After clustering, we can see which movies and TV shows are 

famous in each cluster and 10 out of those are recommended to the users. 

As usual, the number of clusters was a huge factor, especially when you have a huge 

dataset so different numbers of clusters varied from 3 to 40 were tested. Big factor was 

also the Use of Latent Semantic Analysis to reduce the size of the matrix in half. 

The authors define the accuracy for each user as the division of hits with the number of 

shows per movies they recommended multiplied by 100. 

Accuracy for each user=(hits÷number of shows/movies we recommended)*100 

Where : Hits=total number of recommended shows/movies that were listed in their 

profile  

 Number of shows/movie we recommended=10 

 Overall accuracy=accuracy for each test user ÷number of test users 

 

After many experimentations with the number of clusters they chose k=8  as it was the 

one with the most accuracy (24%). You can see the results on the following picture: 

 

 

Picture 2.1: K number 
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A really big factor in the second method is the data processing. For every different user, 

the authors collected all their “likes” apart from movies and TV shows and combined 

them into a long string. This string is called the document of the user, which is then 

tokenized. They then gather all tokens from all the different documents and form a 

vocabulary. Next step is the creation of  a document-token matrix consisting of the 

documents, each of which corresponds to a different user, and  the tokens of the 

vocabulary. For example, if the (i,j)th element of the matrix is equal to 1 that means that 

the jth token of the vocabulary exists also in the ith user’s document. Last, they apply 

the Inverse Document Frequency weighting so that the least important tokens are the 

ones that appear more often. 

Then, they first use a supervised algorithm to recommend the top genres for every user 

and then recommend specific movies and TV shows out of those. Each user is labeled 

with the genres they prefer. Important is the use of a weight which helps prioritize the 

options of the user. According to the paper, if a person liked 2 shows, for example, his 

first best option is a drama and comedy show and his second best option is a comedy 

show, then for this user drama genre has a weight of 1 and comedy genre a weight of 2. 

The bigger the weight, the most likely it is to like a genre.  Last, a person (document)-

genre matrix is created so that they can get the probability that a term in a vocabulary of 

a user is directly associated with a genre. 

The algorithm they pick to use then is the Naïve Bayes algorithm which predicts the 

probabilities that each user might like one genre based on the words in their document. 

Then, they recommend the top five genres and specifically the two most popular movies 

or shows for those specific genres to all the users. 

The results of the second method are not so satisfying. They get 70.98 % accuracy on 

recommending the top 5 genres but they get a 32.84 % on the two movies/TV shows 

from these top 5 genres. A good idea would be to further use machine learning to 

specify more personalized movies for each user and not just the 2 most famous movies 

on each genre. This will demand the use of content based algorithms for each user and 

it’s something that will be used in this dissertation. 
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Like the previous paper, the authors mention that their basic problem is the sparse 

database of Facebook or generally Social media which is one of the main reasons why 

we don’t prefer using those datasets to solve the cold start problem. Specifically in this 

paper, a big problem was also the processing of the text during the second method, 

where many users might have misspelled even the simplest word, making it really hard 

to build the appropriate documents. 

2.2.3 Cold-start Problem in collaborative recommender systems: 
Efficient methods based on Ask-to-rate technique 

In [7], the authors provide a review on how to use the ask to rate technique to eliminate 

the cold start problem plus some different implementations of the technique. Generally, 

these methods are categorized in adaptive and non adaptive. 

They provide a method to use the K-nearest neighbour algorithm which was an 

inspiration for the basic recommender of this dissertation. So to implement the K-

nearest neighbour on our recommender, the Pearson Correlation is used first to find the 

similarity between the active user and all the other users. The Equation for the Pearson 

Correlation can be seen below. 

, ,

1

2 2

, ,

1 1

( ).( )

( , )

( ) . ( )



 

 



 



 

t m t i m i

t m t i m i

h

u a u u a u

m
t i h h

u a u u a u

m m

r r r r

sim u u

r r r r
 

Equation 2.2: Pearson Correlation 1 
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Then, an aggregation function is used, to find the predicted rating for an item based on 

the ratings that the K nearest neighbours have provided. In our dissertation we use this 

function to predict the ratings that the active user will provide to all the movies of the 

database. The aggregation function equation can be seen below. 

,

1

1

( ). ( , )

( , )

( , )

h t h

t
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u a u t h

h
t t uk

t h

h
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
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Equation 2.3:Aggregation Function 

This paper was also really helpful to make a decision on what movies to present to the 

new user. In most movie recommendation systems, by the time a user registers, the 

system demands from the user to rate some movies so that the recommendation engine 

will start to work. The system must be really cautious about those first movies that it 

presents, because they need to provide useful information about the user, before the user 

actually uses the system.  

The paper suggests that the best method to make a profile of a new user is to ask for 

information right away. This is done by presenting items, in our case movies, and ask 

the user to rate them. Then the collaborative filtering system treats the new user 

normally and predicts the ratings of the movies he hasn’t seen. 
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The authors test different techniques based mostly on user effort and Recommendation 

accuracy. The following table shows the different methods and their evaluation in 

online and offline experiments. We can generally see that IGCN, Entropy0 and 

Popularity are pretty high rated. 

Table 2.1: Method Scoring 

Methods User Effort Recommendation Accuracy 

IGCN ★ ★ ★ ★ ★ ★ ★ ★ ★ 

(Log pop)xEnt ★ ★ ★ ★ ★ ★ ★ ★ 

Entropy0 ★ ★ ★ ★ ★ ★ ★ ★ ★ 

HELF ★ ★ ★ ★ ★ ★ ★ 

Popularity ★ ★ ★ ★ ★ ★ ★ ★ 

Item-Item ★ ★ ★ ★★ ★ ★ 

Entropy ★ ★ ★ 

Random ★ ★ ★ 

 

Two of the above methods were taken into account for our recommender, popularity 

and entropy. The Popularity strategy is simply taking into account the movie’s 

popularity by counting the number of overall ratings this movie has. We take into 

account all users and all kind of ratings from 1 to 5. This is a really easy method to 

implement and its really good for the user as it minimizes his effort more than any other 

method, but the big problem is that it may create biased opinions on the database. This 

happens because the more ratings a movie receives, meaning that its really popular, the 

more likely it will be presented to the user, eventhough it might not be the best choice. 

This method favours famous movies and keeps back unfamous movies that the user 

might like, creating unequal distribution of ratings in our database. 
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Pure entropy is another method that we concidered it might be a good idea to try on our 

recommender eventhough it doesn’t score well in this paper. With Pure entropy, the 

system suggests the movie that provides the most information for the recommender, 

eventhough that may mean that the movie is one totally unknown to most people. 

In the future, we will try to use the balanced strategy which is the popularity score 

multiplied by the entropy. This method is the combination of Pure Entropy and 

Popularity methods and although it was easy to implement, we didn’t have the 

appropriate time to try it. 

Another really interesting method that we will implement in the future and was inspired 

by this paper is the Entropy0 which is the Pure entropy method but with taking into 

consideration the missing values. This simply means that non-ratings are now filled 

with 0 whereas 1-5 is the usual rating scale. He follows the formula provided in this 

paper : 

5

0

1
0( ) log( )t i i i

ii

i

Entropy a p w p
w 

  


 

Equation 2.4: Entropy 

Where w=0.5 is the weight of identifying missing values and Wi=1 in the range of 1-5 

because this provided the best results. If we have Wi=0 then the Entropy0 turns into 

Pure entropy of course. This method is meant to be slightly more successful that the 

Popularity or Pure Entropy method. 

Generally, there are two methods to ask your user information, adaptive and non 

adaptive. Non-adaptive is when the same information or questions are provided to any 

new user. This is what MovieLens does, using the popularity stragey, where you 

suggest a movie based on how many users have rated it. This is what we also tried on 

this dissertation but as we said before, we found out that although the implementation is 

easy, the results are biased as people tend to like and rate high, movies that are popular 

and not neceserally good. 
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The adaptive method is when the questions for every new user are based on his history 

or even, in our case, psychological profile. We tried the item-item personalized method 

where movies are proposed until the user rates at least one. We actually demanded from 

the user to rate at least 20 movies as this is a basic step for the recommender to work. If 

the user rate 20 movies with various ratings, from low to high, then this method is 

problematic with the accuracy as it does not identify movies that the user actually likes. 

This is why we ask the user to give us his 20 favourite movies, because that way we 

have a clear idea about what the user likes and recommend him movies based on his 

highest rated movies . 

We also thought about presenting first to the user the personality test, and then 

suggesting him movies based on his top favourite genres, but again this might lead to 

biased results. The personality test should be an  extra help for the Knn recommendation 

engine and not dictate the profile of the user so much . 

What we finally did in our recommender is to find the  most rated movies in the 

Movielens dataset and present this movies and total random movies alternately. You can 

see that on 5.7. 
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2.2.4 Getting to Know You: Learning New User Preferences in 
Recommender Systems 

In [8], the authors study six techniques that can be used in collaborative filtering 

recommender systems to solve the cold start problem. They both try offline and online 

experiments and they come to the conclusion that each technique affects the user in a 

different way, both in the user effort and accuracy of the predictions. 

They stress the importance that the recommender system should ask the user to rate 

items that he is more likely to have an opinion about. Minimizing the effort of the user 

is a critical part , but at the same time, good recommendations must be provided. 

One approach they suggest  to the cold start problem is that pre-made user categories 

can be created and the new user can be assigned to one of them. This part was the 

inspiration to use the Big Five personality type test at, as it helps identify in which user 

category the new user belongs to. Next step is to combine this with some actual ratings 

of movies, something that the authors didn’t concider. They specifically quote that 

“When these models are accurate they can be quite useful, but the premise of 

personalized recommender systems and collaborative filtering is that a person’s 

preferences are a better predictor of other preferences than other attributes”. In our case 

this is not an issue because we know the personality type of the new user, and we 

suggest him specific movies to rate that this kind of personality usually likes. 

Again, the item-item personalized method is stressed in this paper, stating that it’s 

probably the best method to solve the cold start problem. Although it outperformed 

every other method, it didn’t provide the best recommendations but it was the best 

considering the user’s effort. What they suggest is that item-item personalized method is 

“too much personal”, presenting movies that are too obvious that the user will like. For 

example, if a user rated a movie highly, then it will be recommended to him all the 

sequels of that movie. Again, we treated this problem by providing both famous and 

random movies for the user to rate in 5.7 
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In this paper the authors also imply that users in their research prefer using techniques 

that allowes them to rate many movies per page and not many pages with less movies 

between ratings. This is the reason we display a 20 movie list to the user and give him 

the opportunity to reload this page anytime he wants. 

Last but not least, they mention that eventhough popularity and item item strategies are 

really effective and user friendly, there definitely needs to be an amount of randomness 

to the way the movies are presented to the new user. Randomness should be treated with 

caution though because it may lead to excessive user effort and making the 

recommender really difficult for the user. 
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2.2.5 Learning preferences of new users in recommender 
Systems: An information theoretic approach  

In [9], the authors provide some information theoretic strategies to minimize the new 

user problem. They state that the system must make sure that the user does not log off 

the system because he faces a lengthy signup process and that he shouldn’t lose trust in 

the recommender due to low quality recommendations. They both test their strategies 

online and offline and finally the run an online experiment with actual users on a live 

recommender system. 

They state some pretty interesting observations about the way these techniques are 

classified and they group them in either human, system or mixed controlled techniques.  

So, in the context of the recommender system a human controlled technique is when the 

user selects the items to rate, either by typing the titles or searching over the database. A 

system controlled technique on the other hand is when the system itself decides on what 

items will first be presented to the user to rate. And, last but not least, mixed controlled 

technique is when both human and system controlled techniques are combined into one. 

All of the above techniques have their advantages and disadvantages. The user 

controlled scheme will definitely require more user effort but it will also make the user 

feel good about the recommender and trust it more. Also, the user might provide biased 

ratings, meaning that the user might not be actually aware of his exact preferences and 

pick mostly movies that he remembers and not the ones that he actually likes the most. 

An accurate system controlled scheme may not put the user in much effort but may 

sometimes fall short in its recommendations as it doesn’t take into account the user’s  

mood and actual preferences. It seems that the best solution is the mixed controlled 

scheme and this is what we used in our system. We specifically find the top rated 

movies and let the user pick which one’s he prefers to rate. We also provide some 

random movies so that the picks are less biased and the user’s profile will be more 

universal. 
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We saw again in previous papers, that user effort and recommender accuracy are the 

two base factors for the systems success. In this paper, the authors extend the work of 

[8] and study the application of different item selection measures based on information 

theory for the cold start problem. They test all the different measures and find different 

set of items which the provide to the new user. Then they record the user’s input and see 

how effective this set of items is to solve the cold start problem. This will be the base 

for their mixed method system. 

They then proceed with the components of their experimental platform and they suggest 

using both user- based and Item-based K-nearest neighbours algorithm. In our 

dissertation we only use the user based Knn as we believe that the Item based Knn 

doesn’t offer much to the recommender. They also use MovieLens2 as their 

experimental platfom where the user goes from page to page where each one contains 

10-15 movies to rate. But what they find next on their online experiments is that 

eventhough the demand for a lot of ratings from the user is requested, the users don’t 

find that to be much of an effort and understand that this way the recommender will 

operate better. Actually 80% of the users finished the sign up process which is a pretty 

good percent concidering the effort that is demanded from the user. One user 

specifically wrote “I understand why it is needed. I know it will make your 

recommendations more accurate.”  This part of the paper was an inspiration to ask for 

the user to rate at least 20 movies and not 10 as we were planning at first. 

In the conclusion they suggest working on the future on updating the user profiles based 

on their age of evaluations, meaning that old ratings must be eliminated or new ratings 

must have more weight. This is an interesting thought but its something that might again 

be biased and this is why we didn’t experiment with it on our dissertation. 
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2.2.6 A hybrid recommender system based on user-recommender 
interaction  

In [10], the authors create a hybrid recommender system based on the MovieLens 

dataset combining random and k-nearest neighbor algorithms. They state that the most 

current recommender systems seldom imply specific user-recommender interaction 

scenarios in real-world environments and they try to solve this problem with the 

creation of a new hybrid recommender system. This system will use the random 

algorithm to solve the cold-start problem, something that was an inspiration in our 

dissertation but we believe that using only the random algorithm will make the user 

effort much higher. This is why we suggest to the new user a few random and a few 

really famous movies to rate at the beginning. 

Then they define the recommender behavior in 3 different steps. First, the recommender 

accepts the user’s request, second the recommender presents N recommendations to the 

user and third the system records the user’s choice for further usage.  This is also a 

small preview of how are our recommender operates. They also define the user behavior 

in three steps. First the user gets the recommendations, second the user checks if the 

recommendations match his preferences and third the user proceeds with a choice. The 

user behavior in our movie recommender system is a little different,  because the user 

get a set of recommendations that includes different movies so he doesn’t have exactly 

the choice to see if that set match his preferences. He can just pick a movie from the set 

he was suggested. 

The authors also provide us with assumptions to simplify the whole procedure. This was 

an inspiration to provide our own assumptions in 5.4.  
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In this paper, the authors divide the users of the Recommender System into two 

different categories called the browse and the rate user. Browse user is the one who 

specifies only which items are browsed and on the other hand, rate user is the one that 

specifies the ratings to the items. In their study they only consider browse users, which 

is something that is not helpful for our project, as our recommender does not work with 

browsing in mind ,but with the users providing actual ratings. You can see below the 

user and recommender behavior in their system. 

 

Picture 2.2:The recommender Behavior 

Generally this paper didn’t contribute much to our recommender system because it is 

mostly based on the browsing experience of a user using a Movie recommendation 

system. But, it introduced us to the hybrid approach of using the random and knn 

algorithms which is something that we used in our own ways to solve the cold start 

problem. Also, it inspired us to include a chapter that includes some important 

assumptions about our recommender system. 
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2.3 Personalization In Recommender Systems 

Nowadays, with the Internet being the main source of entertainment, products and 

services, personalization is a huge factor and a great area to study. Scientists start to 

incorporate elements of the human psychology in human-computer interaction, and this 

gets more and more important because computers should work with the users 

preferences in mind.  Some of those elements would be demographic information such 

as age and gender, personal preferences such as music or movie taste and even 

psychological aspects, meaning emotions or personality traits.  

Computer scientists make a great effort to model the human psychological aspects and 

include them in recommender systems, so to create better suggestions for the users and 

make the recommender more personalized. There are many different ways to extract the 

personality of a user, from his social media activities, or making him answer a simple 

questionnaire. One might say that this can be confusing or demand a lot of effort from 

the user, but the user must understand that by giving more input to the system, the 

system will provide better output, meaning better recommendations. A big problem of 

course is the low amount of data around people’s personality traits, but we hope that 

this will change in the future. 

In this part of the dissertation, we study different ways that were researched in the past 

to gather and use the user’s personality into a recommendation system.   Although these 

papers are really interesting, their lack of data and implementation is something that 

lead us to make a movie recommender system in Python with some actual Data and 

provide substantial results. 
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2.4 Literature On Personalization 

2.4.1 Multi criteria pseudo rating and multidimensional user profile 
for movie recommender system  

Paper [11] is a simple introduction on how a certain aspect of human factor can be 

applied on recommender systems. The main subject of this paper is reducing the 

Sparsity Rating problem by incorporating contextual information such as where, how, 

with whom and at what time the movie has been seen. 

The Sparsity Rating Problem is caused when users in recommender systems rate only a 

small number of items, and the system cannot calculate and find the neighbors of the 

active user due to lack of co-rated items. This is why in this dissertation we ask for the 

user to rate at least 20 movies at the beginning. Then pseudo ratings are being generated 

and the recommender suggests to the user the one’s with the highest value. 

In this paper, the authors attempt to enhance the quality of these pseudo ratings by 

including contextual information of the user. Specifically, they do this on a movie 

recommender system by applying Naïve Bayes algorithm and multi regression to 

analyze the contextual information. 

They also mention the Without Contextual Information Problem, where the 

recommender system suggests different movies based on contextual information. It’s 

totally different for the recommender, if someone wants to watch a movie with a friend 

or alone. If he wants to watch a movie alone, then the recommender will see his ratings, 

find his neighbors and suggest some movies, but if he wants to watch a movie with a 

friend, then the ratings and pseudo ratings of this friend will chance the outcome of the 

recommender, so that it will suggest a movie that they will both like.  

Apart from the companion, this paper also presents the place, time and day dimensions, 

which are pretty interesting and something that we will try in the future. Next step is 

turning the movie data into separate vectors, which was an inspiration to do the same 

into our recommender but instead we used the personality dimension. 

  



  -29- 

Moreover, it was really helpful to see that the ratings are then normalized. This is 

something that we also did in our recommender. The users rate a movie with -1 if they 

don’t like it, 0 if it's neutral and 1 if they like it. Although this is easy for the user to 

understand, it needs to be “translated," meaning normalized, into something that the 

recommender will understand. For example, later it will be really difficult to make 

equations if a user rated a movie with a 0 because all equations will turn out  0. So, the 

they convert the values to 0, 0.5 and 1. That way, equations will return 0 only if a user 

rated a movie as -1 which is actually what we want. In our recommender we followed a 

similar procedure which you can read in pages 111-112 of the Script. 

The use of Naïve Bayes is a little questionable in this paper as this algorithm cannot 

learn and understand interactions between variables and features. For example, if the 

user loves to watch horror films and usually enjoys movies at night, the algorithm 

cannot understand that the user might not like to watch horror films at night.  
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2.4.2 Making recommendations better: An analytic model for 
Human-Recommender interaction  

Paper [3] is the main reason we decided to study how the Human Factor and personality 

affects the Recommender systems. As described in the paper, Recommender systems 

are not always capable of generating good recommendations for the user based only on 

raw data. To improve the system, the recommender needs to understand the needs and 

information seeking tasks of the user. The authors provide their own framework, which 

is called Human-Recommender Interaction (HRI). It’s their way to connect the user 

needs with the recommender algorithms. 

Their two main assumptions are first, that recommenders cannot understand the reason a 

user asks for recommendations and second, that recommenders should be trained to 

have personalities and interact with the users in a conversational way.  The second 

assumption is the main reason we use the Big Five personality test so that the 

recommender “knows” and operates accordingly to the user’s personality type. 

Then, the authors proceed to the idea that there are different types of recommendations 

based on what the user needs and not based on the casual thought that best 

recommendation equals to more liked recommendations. They use HRI to understand 

what the user actually needs, which is different most of the time because people tend to 

have different needs based on what they search for , when they search for it and why 

they search for it etc. For example, as stated in the paper, if a student is writing one of 

his first papers and using a recommender for his research and still feels that something 

is missing, he is actually looking for validation of his research and suggestion on 

whether he missed something. The human-Recommender Interaction system makes the 

assumption that this student is concerned about the effectiveness of the recommender 

because he is a novice user, so the recommender must adapt and suggest more 

appropriate recommendations based on this extra information the system generated 

from the user. 
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The authors mention that there are three Pillars to HRI shown in the following table. 

Table 2.2: Pillars to HRI 

 



  -32- 

First is the Recommendation Dialogue, which is the procedure where the user passes 

information to the recommender and the recommender returns his recommendations. 

Second is the Recommender Personality, which is really important and is the perception 

the user has for the recommender over the period of time. It’s actually how the 

recommender adapts to the user’s needs. Last, the End User’s Information Seeking Task 

is the reason the user needs and uses the recommender system. All this pillars are really 

interesting and might be used in the future to make our recommender even more 

advanced. 

Generally, this paper appreciates the use of recommender systems and suggests that 

people should establish a relationship of trust with the recommendation engine, but also 

the engine must be able to adapt to the user needs.  There is not any actual 

implementation as we believe it’s pretty difficult due to the fact that they are no such 

data that will allow testing this model.  Some of the characteristics of each of the 3 

pillars of the HRI are also represented on the Big Five personality test so although the 

idea of this paper is pretty good, the lack of implementation and testing makes it a little 

ambitious. In the future, apart from the personality test, it will also be a good idea to 

implement a test to examine exactly what the user specifically needs from the 

recommender. That way the recommender will be more user-centric and we will be able 

to better analyze and understand the user’s needs. With us implementing the Big Five 

personality test, we managed to emulate the two Pillars of this HRI engine, the 

Recommendation Dialogue and Recommendation personality in a simpler and more 

straight forward way, based on the current data that is out on the Internet. 
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2.4.3 Personality, movie preferences, and recommendations  

This paper is a relative small but interesting paper. In [12], the authors research the 

connection between media preferences and personality plus the correlation between the 

users opinion of a recommender system and the media ratings and viewing histories. 

They provide a survey out of 73 Netflix users, which is not really that representative, 

but they manage to show different correlations between different types of personalities 

and what preferences these personalities have for specific genres of movies 

Their result is that Conscientious, a personality trait that is included in the Big Five 

personality test, is strongly correlated with people who trust and find more use in 

recommendation systems. Their main focus on this paper is to answer whether there is a 

relationship between human personality traits and movies preferences and whether these 

personality traits help the user to gain trust over the recommender 

They use the Big Five Personality test and then they collect ratings on different movies 

recommended by Netflix. This is really similar to our approach in this Dissertation. 

They then ask users to answer some simple questions so that they can figure out the 

user’s actual attitude toward the recommender system. By using Pearson correlation 

between the users personality scores on each of the Big Five Attributes and their 

answers to the above specific questions, they gather some useful results on the table 

below.  

Table 2.3: Results 

  Extra. Agree. Consc. Neuro. Open. 

How often do you look over some of the 

movies that Netflix recommends? 
0,06 0,03 0,27 -0,14 0,10 

How often do you add recommended 

movies to your queue? 
0,19 0,00 0,24 0,04 0,00 

What percentage of movies in your queue 

were recommended by Netflix? 
0,11 0,10 0,25 -0,08 -0,16 

How helpful do you think the 

recommender system is? 
0,15 0,15 0,32 -0,07 -0,20 

How much do you trust the recommender 

system? 
-0,06 0,13 0,24 -0,13 -0,24 
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We can clearly see that Conscientiousness is strongly correlated with users who are 

more positive towards the use of the recommender system. This translates to the fact 

that Conscientious people rate more movies than the average user, meaning that they 

trust the recommender more, so the recommender has more data to analyze and make 

recommendations for those users. 

People with Conscientiousness are people who like to plan, think very carefully and are 

well organized. The authors believe that there is a positive correlation between this kind 

of people and recommender systems because recommender systems will help organize 

their viewing experience. Recommender systems organize a plan, with movies to watch 

and this people trust that plan and as a result they take more suggestions from the 

system. 

A negative aspect the authors found about this correlation is that Conscientious people 

respond very badly when a recommender suggests a movie that they actually don’t like. 

They are very sensitive to big negative changes so that one incident can negatively 

impact the user’s impression that the system can actually help and provide a plan for 

movies to watch.  

The authors didn’t manage to find a correlation between Conscientiousness and genre 

preferences and this was an inspiration to research the Big Five Traits and how they 

relate to genre preferences. In this dissertation, strong correlations between the user’s 

personalities and movie genres are created, using a pretty big data set, which helps 

solidify more the results. 

Even though the authors manage to find a great correlation between the user’s 

personality and the recommender system, we take this study even further and we study 

all the Big Five Traits and how they interact with the user’s genre preferences. The 

questionnaire they use after the personality test is done is also a great idea and 

something that we will improve and include in the future. 
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2.4.4 Movie recommender system using the user's psychological 
profile  

In [13], the authors create a movie recommender using a hybrid recommender system 

and the users personality, pretty similar to the recommender we created in this 

Dissertation Project. 

Their recommender system is called Movie Recommender and uses both collaborative 

and content based filtering methods plus the analysis of the user’s personality and 

psychological profile. Their main goal is to prove that there is an actual correlation 

between personality traits and movie preferences, pretty similar to what we are trying to 

achieve. 

They use the IMDB Top 100 Greatest Movies of All Time as their database and 

collected the movie title, the actors, its genre and score received on IMDB. In the field 

of Data Mining and Recommender Systems, a database with 100 elements is not big 

enough to base an actual conclusion from the operation of a Recommender System, so 

this is why in our recommender system we used the Movielens dataset which has a lot 

more data. In the next table you can see the distribution of movie genres on the dataset 

they used.  

Table 2.4:Movies/Genres 

Movie Genre Number of movies having the genre 

Adventure 18 

Drama 56 

Romance 22 

War 9 

FilmNoir 6 

Comedy 18 

SciFi 8 

Horror 10 

Action 13 

Animation 2 
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Then they proceed to compute four features for the hybrid recommender and they do 

that by storing the history of all the previously rated movies and four different 

personality scores, for all the users. 

A big flaw in this paper is the choice of the questions that are used to come up with the 

user’s personality. The authors pick a personality test with fewer than normal questions 

but it’s not based on an actual research. It’s good that the authors try to make the 

recommender faster and simpler so that the users will actually complete the Personality 

test but we believe that they are not in the position to understand how the Personality 

test actually works as there are many psychological factors involved. So, this is the 

reason why we use the world known Big five personality test in our recommender 

system. But generally, their personality test uses the four temperaments which are 

sanguine, choleric, melancholic and phlegmatic. 

Also another big problem with this paper is the fact that they make up how to evaluate 

the test and the answers to figure out what type of personality the user is. This was a big 

concern in our paper and this is why we used the Big Five Personality test, as it is the 

only personality test that provides the calculations that needs to be done to find a user’s 

personality , [14]. They come up with the following table. 

Table 2.5: User Profile and Genre Preferences 

Psychological 
Profile Characteristics Movie genres 

Choleric 

extroverted, hot-tempered, quick 

thinking, active, practical, strong-

willed, self-confident, independent 

Horror, War, Action, C 

omedy, Romance 

Sanguine 

extroverted, fun-loving, impulsive, 

entertaining, persuasive, easily 

amused, optimistic, receptive, 

animated, excited 

Action, Adventure, 

Comedy, Drama, 

Romance 

Phlegmatic 

introverted, calm, unemotional, 

easygoing, slow, indirect, practical, 

patient, persistent, consistent 

Sci-Fi, Tragedy, Cult, 

Drama. Film-Noir 

Melancholic 

introverted, logical, analytical, 

factual, private, reserved, timid, 

self-sacrificing, gifted 

Animation. Film-Noir, 

Parody, Cult 
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Then they use collaborative filtering in a similar way also used in this Dissertation. 

They first make an algorithm to find similar movies but they don’t mention where their 

similarity is based on. We believe that there is no particular reason to find the similarity 

between the movies as this will return biased recommendations. For example Rambo 1 

and Rambo 2 should be really similar according to their algorithm but it’s not applicable 

to recommend Rambo 2 to a user as this is not an intelligent recommendation, based on 

the fact that you already asked the user to answer a personality test. It might seem a 

little disappointing to spend time answering a personality test and then get the most 

obvious recommendations. They also use the Knn algorithm the way we do. 

As we can see on the final formula below, they put twice as much importance on the 

movie similarity measure.  Based on what was mentioned previously, this will make the 

recommendations more biased and this is why we use three different formulas on our 

dissertation, one with only the Knn, one with 50% personality and  50% Knn and one 

with 80 % personality and 20 % Knn. Also, it seems that this recommendation engine 

suggests only one movie which is pretty limited. 

2 Movies Pr ofile

rec
m movies

Ratings KNN

arg max

* sim ( m ) sim ( m )
movie

sim ( m ) sim ( m )

 
  

   
 

Equation 2.5: Movie Recommendation Formula 

 

They state that their basic problem was coping with the cold start problem due to the 

fact that they have insufficient number of data and users hesitating to spend time filling 

the personality test. This is something that we managed to solve using the MovieLens 

database and using a more accurate and trustworthy personality test. 
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They specifically mention” The fact that our system is based on first evaluating the 

psychological profile of the users makes it impossible for a reliable evaluation of the 

system's accuracy. Although there are several free datasets available (such as the ones 

from MovieLens5, for example), they lack the psychological profile of the users and 

therefore cannot be used to evaluate the system.” 

This is not actually a problem and it’s an understatement. There is no need to have the 

psychological profiles of the users in your dataset because the main focus is to find what 

personality type is the current user and use this as a mean to understand what genres he 

prefers. So you don’t actually need personality types of all the users but you just need to 

determine the type of the active user so to come to a conclusion about the movies genres 

he likes. Then, as we do in our recommender, you use that movie genres preference to 

filter the final recommendations. 

Also one might say that if you have the psychological profiles of all the users in your 

dataset, you can use that to find K nearest neighbors to the current user but this is also 

not important because we already use Knn for all the users and the current user. That 

way the recommender is less biased because he gets recommendations from all the 

different kind of user personalities and then they are filtered based on his genre 

preferences. This means that he can get a movie that it might not belong in his favorite 

genres but it will belong in his K-nearest neighbors’ favorite movies, so it might be an 

outsider that he actually likes. 
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2.4.5  Relating Personality types with user preferences in multiple 
entertainment domains  

This specific paper is the foundation of this dissertation project. It provides useful data 

that help us achieve the connection between the human personality and the movie 

recommender. Here follows a summary of what it’s included in this paper.  

In [4], the authors present a study between different user personality types and their 

preferences towards movies, tv shows, books and music. They analyzed a pretty big 

number of Facebook user profiles (almost 54.000) that contained the user’s personality 

scores in the Big Five Personality test and their interests in the entertainment domains 

previously mentioned. This paper is one of the few that provides a through data analysis 

of different users and comes up  with data statistics that can be used into our 

recommender.  

They make a great point on the importance of personality, as it is a combination of 

characteristics and qualities that are unique to every user and develop an individual way 

of thinking and behaving. Having this in mind they proceed with the Five Factor Model, 

which is what we also call the Big Five model, and use this to establish each different 

user’s personality. 

The authors based their research on a database released by a tool called myPersonality, 

a Facebook application where Facebook users take psychometric tests. They restrict 

their analysis to a subset of this database and after implying some data mining 

techniques they come up with a dataset that includes the top 16 genres in movies, music, 

books and tv shows, 53,226 users (where almost 60% are female an 40% are male) and 

of course the Big Five Personality scores. 
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They then analyze the dataset and they find important and meaningful correlations 

between the Big Five personality types and the user’s movie preferences. They provide 

the following table which we used in our own dissertation .  

Table 2.6: Correlation between Genre and Big Five Traits 

 

This table shows the personality based Traits (Openness, Contentiousness, Neuroticism, 

Extraversion and Agreeableness) for the 16 different movie genres. Each row of the 

table is a vector and the values on each cell are in the range of 1-5 and they represent 

the average score of the Big Five personality traits of the users who had liked the 

corresponding genres. 

The highest the score of a column, the greener the column will be and the lowest the 

score of the column, the redder it will be.. A remarkable notice is that some genres were 

erased either from the movielens dataset or from this table so that we have the same 

genres throughout the dissertation. 
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We generally notice that users with high openness have a tendency to like tragedy, neo-

noir, independent, cult and foreign movies. High conscientiousness corresponds to users 

who favor independent, adventure and sci fi movies. High Extraversion also 

corresponds to users who favors drama, romance, comedy and action movies and high 

Agreeableness means that the users like Adventure, romance, comedy and drama 

movies. Last, high value in Neuroticism means that the users prefer cult tragedy and 

animation movies.  We should point out that all the preferences we mention for each 

Big Five personality trait and each genre is in order of preference and not random and 

this is what makes it interesting. 

Furthermore, the authors apply the Apriori algorithm to derive some association rules 

from the dataset. This might be a good idea to try in the future. Their results can be seen 

in the table below. 

Table 2.7:Apriori Rules 

 

 

Here we can see the rules that have the most confidence. For example, the first two 

rules imply that if a person has high contentiousness, high Extraversion and high 

Agreeableness he would like comedy with a confidence of 67% and Support 1.87 %. 

All this rules are really interesting but we don’t think that add extra value to the already 

findings. What we will do in the future is to apply the apriori algorithm and derive 

association rules that include the information of the user that is included in the 

Movielens file and the genre.  For example it will be interesting to extract rules that 

include the gender, age and occupation with the genre preference. That way we can 

imply those rules on marketing strategies and online ad campaigns.  

  



  -42- 

In the following and last table we can see the similarities between the different types of 

personalities and the different genres. The color of the cells is the values of the 

Euclidean distances between the genres associated to the user personality stereotypes. 

For example a person who likes comedy and action genres has similar Big Five 

personality based profiles. Also, people who like romance movies have similar 

personalities to people who like comedy and action. 

Table 2.8:Similarities  
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3 COLLABORATIVE 
FILTERING RECOMMENDER 
SYSTEMS 

3.1 Concepts And Vocabulary  

There are many common concepts and vocabulary used in the various recommendation 

methods. In collaborative filtering though, many of those concepts are being used to 

describe the problem and the requirements on the system. 

So, in a Recommender system that uses collaborative filtering, we have the users which 

they provide various ratings for different items. In our movie recommender, the users 

are the people that rated all the various movies in the Movielens Dataset (plus the active 

user), and the items are all the different movies. Those users provide ratings for these 

movies, where rating is a general expression of preference. Those ratings can be either 

explicit, meaning something that the user entered himself or implicit, something that 

was calculated from the user’s behavior. In our system, the ratings are in a scale from 1 

to 5 but generally the ratings of items in a recommender can take many forms. An even 

simpler way would be to use a like/dislike system, for example, where the user enters 1 

if he liked the movie and 0 if he didn’t but that would make our recommender less 

accurate. This is a pretty good method for other kinds of recommender systems like the 

ones used in e-commerce websites, where you only care if the buyer, for example, 

bought a specific product or not. 
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What happens next with the users and the items is that we form a ratings matrix like the 

example shown below. Here we can see three different users and their ratings for 

different movies. Nan is placed when the user hasn’t expressed his opinion about the 

movie, meaning that he simply haven’t seen the movie, or he has seen it and didn’t 

manage to rate it yet. 

Table 3.1: Rating Matrix example 

 Titanic Alien Terminator Forrest Gump 

Nick 5 2 Nan 4 

John 1 5 5 Nan 

Peter 3 Nan 3 Nan 

 

The first important goal of a collaborative filtering recommender system is to make 

predictions, meaning to predict whether a user likes or not a specific item. For example, 

again, if we check the ratings in the above table, we can predict that user Nick won’t 

probably like the movie Terminator, as he had rated two similar movies (Titanic and 

Forest Gump) highly and also rated Alien with a low rating. Alien and Terminator are 

both action/horror movies, so we can see that generally Nick doesn’t like action/horror 

movies and likes casual/ drama movies like Titanic and Forest Gump. As a conclusion 

Terminator will not be a good option for Nick. 

Second and most important goal of a recommender system is to make recommendations 

to the different users. That means, predict first and then present a list with the best items 

that the user will most probably like. In collaborative filtering, this happens by looking 

what similar users with the active user like.  
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3.2 How It Works 

The most common way of getting a recommendation in real life is by asking a friend for 

his opinion, preferably someone who usually likes the same stuff as you do. In this 

Dissertation, for example, we are looking for “friends” that have a similar taste with the 

active user in movies. 

This is exactly the idea behind collaborative filtering, and that’s what the word 

collaborative actually means. It’s a way in which users help each other out in navigating 

the catalogue of different products, in our case, movies, so to find things that they like. 

So the basic premise of Collaborative Filtering is that if two users have the same 

opinion about a bunch of products, then they are likely to have the same opinion about 

other products too. Collaborative Filtering is a general term and any algorithm that 

relies only on user behavior (history, ratings, similar uses, etc) is a Collaborative 

filtering algorithm. 

The objective of the algorithm is to normally predict the active user’s ratings for 

products he hasn’t yet rated. The input for the algorithm is usually a database that 

contains different users and their ratings for different products in the past. As we 

previously mentioned, these ratings could be either explicit or implicit. Picking this 

input and the past ratings of the active user on different products, the collaborative 

filtering algorithm will predict the ratings for the products the user hasn’t checked out 

yet. With these predicted ratings, you can sort the products and recommend the top 

picks for the active user.. 
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3.3 Basic Steps 

Here follow the basic steps of a simple Collaborative Filtering operation. 

1. The set of ratings for the active user is identified. 

2. The set of other users who are most similar to the active user, according to a 

similarity function (in our case Pearson Correlation) is also identified. 

3. Then, we identify the products that these similar users liked. 

4. A prediction is generated, meaning a rating that would be given by the active 

user for each of these products. 

5. A set of top N products is recommended based upon the top highest predicted 

ratings of the products in the previous step.. 

3.4 Taste Assumptions 

There are two basic assumptions that data scientists made back then about the different 

users of the recommender system. The first and most important is the fact that if the 

active user has a high pair similarity correlation with another user, then we assume that 

apart from their already rated products that they share similar tastes, they also share 

similar tastes on future products that they both haven’t rated. That generally means that 

we assume that all users have stable tastes and that the strongly correlated users will like 

related things in the future. This assumption helps the recommender system work well 

as it’s easier to calculate and keep the useful neighbors of the active user. 

The second assumption that helped the operation of the recommender in the past was 

one which implied that if the correlated users agree on one part of the recommender , 

they will likely agree to more parts too. This is a really helpful assumption, especially in 

a movie recommender system like our 50/50 system. That means, for example, that if 

two users tend to rate highly movies whichinclude Vin Diesel, we assume that they like 

Action films. Or of course, the opposite. 

Those assumptions that scientists made back in the days, led us to make our own 

assumptions on 5.4. 

  



  -48- 

3.5 K-nearest Neighbors Algorithm 

Knn is one of the most famous algorithms in modern data science. It is considered a 

non-parametric algorithm, meaning that it does not make any assumptions about the 

data distribution. This is a really important and helpful feature in the modern world, as 

most data don’t follow the typical assumptions made. Knn is also what we call a lazy 

algorithm, meaning that there is a minimal training phase in the data, making the 

algorithm really fast. This means that Knn keeps track of all the data all the time and 

bases his decisions on that. This makes the testing phase a really costly procedure. 

One of the most important assumptions in the Knn algorithm is the fact that it assumes 

that all data are in a feature space or even better, a metric space. The data are usually 

vectors, as you can also see in this dissertation. All data are considered different points 

in this metric space. 

Also, really important is the number k. This is the number of “neighbors” that the 

algorithm will have in mind when it makes  its classification.  It’s a common technique 

to make this number equal to the square root of the number of data, but the search for 

the optimal k is a whole different area of study by itself. 

3.5.1 Advantages of Knn over other algorithms  

One of the main advantages of the Knn algorithm is its simplicity. It’s one of the easiest 

algorithms to implement as you only need to configure and tune k, meaning the number 

of neighbors that will be used in the prediction. Numerical predictions are easy to 

interpret, and you can easily see any given time which neighbors are being used for the 

prediction. 

Another advantage is the fact that it makes explaining the recommendations to the users 

really easy. In item-based recommender systems, for example, the active user is 

presented with the neighbors’ items and their ratings, so he gets a justification on why 

these items were suggested to him.  
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 Efficiency is also a big factor in Knn since  it’s a lazy algorithm and requires no costly 

training phase of the data. Everything can happen in offline mode, and all the neighbors 

and recommendations can be stored with little memory usage. This can make the 

recommender scalable to millions of products and users and can even determine which 

variables are important, improving the recommendations. 

Last but not least, the fact that Knn is an “online” technique is a big plus, especially in 

recommender systems. This actually means that new items and users can be added at 

any time without retraining the dataset.  This makes the Knn one of the most stable 

algorithms, in contrast with, for example, the support vector machines algorithm where 

retraining of the data is required. 

3.5.2 Weaknesses of Knn over other algorithms  

Apart from all the advantages, Knn has also some disadvantages. One major 

disadvantage is the fact that all the data from the dataset has to be “present” in order to 

make predictions. This is a time issue as the algorithm has to compare every new item 

or new user with all the previous and of course, in a dataset with millions of items and 

users, this process takes a long time. Generally making the predictions is very expensive 

as you have to calculate the distances between all the different data points. 

Furthermore, finding out the correct weights and scaling factors might be a little 

difficult to determine, as a lot of time, trial and error is needed before finding the right 

ones. 

Last, in Knn we have what we call the “Curse of Dimensionality," which is a problem 

that occurs when the solution space has more than one dimensions. That leads to big 

differences between the performance of the algorithm on the unseen data and the 

training set. In more details, this means that even though Knn works really well with a 

few input variables, if these inputs increase, then the dimensions also increase, and the 

more dimensions, the more distance is created between the data points. This is 

considered an unexpected behavior of distances. 
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3.5.3 Explanation of Knn operation 

Here we will present you with a simple example to understand how the Knn operates. In 

the following diagram, we have three red circles and three green squares. They 

represent what we call so far, the data points and also the neighbors of the blue star. 

 

Picture 3.1: Knn Operation 1 

The main point of the Knn algorithm is to find if the blue star is a red circle or a green 

square. Now as we said before we need to arrange the value of k, meaning how many 

nearest neighbors we will have in mind when we will try to figure out where the blue 

star belongs. For now let’s say that k=3 and that leads us to the following picture. 
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Picture 3.2: Knn Operation 2 

 

We can see now that a circle that has the blue star as its center was created, and it 

includes only the three red circle data points. So we can say with great confidence that 

the blue star should belong to the red circle family as his closest neighbors are all red 

circles. The choice of k was crucial in this example, and next on, we will study how to 

pick the best K for each case. 
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Here follows an example that can help you understand how important k is. In the 

following picture, we can see a similar example to the previous one but with more data 

points. Again, we are trying to find if the blue star is a red circle or a green square.  

 

Picture 3.3: Knn Operation 3 

First, we try to put the value of k=3. That means that we only consider the three nearest 

neighbors when we are trying to figure out the blue star. We can see that if k=3, then the 

blue star will probably be a red circle. 

 

Picture 3.4: Knn Operation 4 
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If we change the value of k to be equal to 4, we can currently see that we can’t decide 

what the blue star is, because  now we take into account four neighbors, and we can see 

that the four nearest neighbors of the blue star are two red circles and two green squares. 

 

Picture 3.5: Knn Operation 5 

Last, if we change the value of k to be equal to 5, we can see that now the blue star is 

definitely a green square as we have three green square neighbors and two red cirle 

neighbors. 

 

Picture 3.6: Knn Operation 6 
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In theory, the more neighbors we pick (high k), the better, but in order to do that you 

need to find a way to determine how their preferences will be related to the preferences 

of the active user. This of course, will generate a lot of noise as it’s virtually impossible 

to do in a big database with a lot of dissimilar neighbors. 

So a normal number for k is something between 25-100 neighbors or the square root of 

the number of data we have, which is what we used in this dissertation. If you have 

fewer neighbors, then it’s easier to focus on the most similar neighbors and improve 

accuracy by eliminating noise. On the other hand, it will be much harder to find related 

users, so the number of items that you will be recommended on the final phase of the 

recommendation process will be decreased or be inaccurate. 

3.6 Calculating Similarity Scores 

After collecting all the different data points in knn you need a way to determine how 

similar those data points are. In order to do this, you need to have a similarity score 

between the different points, something that determines their similarity. There are many 

ways to do this, but the most famous ones are the Euclidean distance and Pearson 

correlation. In this dissertation, we picked Pearson correlation. 

3.6.1 Why we choose Pearson correlation? 

Since  we are working on a movie recommender that has all the movies rated on a scale 

of 1 to 5, we picked Pearson correlation because it’s the most appropriate one to use for 

measurements that belong in an interval scale. The basic advantage of this correlation is 

that it corrects for rating inflation, meaning that if a User tends to give lower ratings 

than another user, but their tastes still fit, then using Pearson correlation, they are still 

supposed to have similar preferences. That means that if the difference between their 

ratings is consistent, then there is still a correlation between those users in contrast with 

the Euclidean distance where the two users will not be correlated because one is harsher 

than the other. 
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3.6.2 How Pearson correlation Works 

As we mentioned before, Pearson Correlation is used as a similarity metric which tells 

us how similar users are in our movie recommender. It helps us find the nearest 

neighbors when we already have represented the user vectors as data points. 

So given any two variables, the correlation is a measure of how similar those variables 

are or how similar the changes in those variables are. The Pearson correlation is nothing 

but the correlation that you will normally measure when you are trying to do something 

like a linear regression.  

So, having in mind that the vectors are the user’s ratings for different movies, each user 

might have a certain bias. As we said before, some users might rate some movies highly 

and some other users might have a general tendency to rate everything low. Pearson 

correlation helps to account that by normalizing each user's rating by their average 

rating. 

Let’s say we have two users, the red circle vector represents the user X and the green  

circle vector represents the user Y. User X has an average rating which will be the mean 

of rating x1, x2 to xn and also User Y will have his own average rating that will be the 

mean of y1, y2 to yn ratings. 

 

 

Picture 3.7: Pearson Correlation Operation 1 
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Now we take user X and we shift him by his mean, meaning that each number x1,x2 to 

xn is adjusted by the user’s mean rating. This is what we called normalization because 

now this will give us a new point where the user will be normalized by his average 

rating. If 𝑥̅ is the average rating of user x, the new tuple of the user will be x1-𝑥̅, x2-𝑥̅, 

x3-𝑥̅  and so on.  

 

 

Picture 3.8: Pearson Correlation Operation 2 
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Now we do the same thing with user Y, meaning that we shift him based on his average 

rating. So again each number in the new tuple will be y1-𝑦̅, y2-𝑦̅, y3-𝑦̅ and so on, where 

𝑦̅ is the mean rating of all the movies that users Y has rated. 

 

 

Picture 3.9: Pearson Correlation Operation 3 
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So currently we have adjusted user X and user Y to be represented such as, some of the 

bias that was preexisted has now been removed, and we managed to do that by 

normalizing for the average rating. The cosine similarity between these two new vectors 

is the Pearson correlation. 

 

Picture 3.10: Pearson Correlation Operation 4 
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The formula for the Pearson Correlation is the following : 

 

Corr(x,y)= 
∑ ( 𝒙𝒊−𝒙̅)( 𝒚𝒊−𝒚̅)𝒊

√∑(𝒙𝒊−𝒙̅)
𝟐

  √∑(𝒚𝒊−𝒚̅)
𝟐
 

 
 

= 
(𝑥−𝑥̅,   𝑦−𝑦̅)
‖𝑥−𝑥̅‖‖𝑦−𝑦̅‖

 

 

 

=CosSim(𝑥 − 𝑥̅,   𝑦 − 𝑦̅) 

Equation 3.1: Pearson Correlation 2 

 

As we can see again the pearson correlation is nothing more than the cosine similarity 

of 𝑥 − 𝑥̅  𝑎𝑛𝑑   𝑦 − 𝑦̅. As we said again, 𝑥̅ represents the mean of all the ratings that the 

user X has given and 𝑦̅ represents the mean of all the ratings the user Y has given. 

3.7 Predict Rating Formula 

Once we find the k-nearest neighbors of the active user, we use those neighbors to find 

the rating that the active user will give to any particular product.  The formula used for 

this is the following:  

𝑝𝑎,𝑖 = 𝑟̅𝑎 +
∑ (𝑟𝑢,𝑖 −𝑢∈𝑈 𝑟̅𝑢) .  𝑤𝑎,𝑢

∑ |𝑤𝑎,𝑢|𝑢∈𝑈

 

Equation 3.2:Predict Rating Formula 1 

 

Here follows the explanation of the predict rating formula and how it works. 
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First, let’s say that we have to predict the rating of the Active user a for product i. So 

 𝑝𝑎,𝑖 , is the predicted rating for the active user for  product i . We first start with what 

the average rating of the active user a is for any product. So, if we have no information 

about what the active user’s rating for a product would be, we just pick the average 

rating that the neighbors have given to other products (𝑟̅𝑎) . 

Now we have some information, we have the nearest neighbors for the active user and 

we have their ratings for the product i. So we have to incorporate this into the prediction 

for the active user’s rating. Then we have a summation over all the users in this set of 

nearest neighbors of the active user a. So for each of those neighbors we are computing 

some numbers and then picking the summation of that number (∑𝑢∈𝑈 ). As we 

might expect, that number has to do with the rating of that nearest neighbor for the 

product i. 

So given a user u, in the set of nearest neighbors of the active user, 𝑟𝑢,𝑖 is the rating of 

this user for the product i . Important think to notice is that we don’t just directly use the 

user’s rating for the product i , we are also adjusting it by that particular user’s mean 

average rating 𝑟̅𝑢 . So we use (𝑟𝑢,𝑖 − 𝑟̅𝑢) for our calculations.  

Last and most important step is to multiply this summation with 𝑤𝑎,𝑢 which is a weight 

for that rating. This means that 𝑤𝑎,𝑢 is the similarity between user u and the active user 

a, meaning in our case, the value of the Pearson correlation calculated for those 2 users.  

In any case, what we need to remember is that the predicted rating is the weighted 

average rating of the nearest neighbors of a particular user. 

  



  -61- 

3.8  How a Typical Movie Recommender System 
Works  

After explaining the different concepts and vocabulary used in Recommender systems 

and particularly the ones using Collaborative filtering, we can proceed in the more 

detailed approach used in Movie Recommender systems.  

So, the idea of a Movie Recommender system is that different people rate movies in 

order for the system to understand their taste and return useful recommendations. In the 

following Picture we can see the active user and the different other users registered in 

the system.  

 

Picture 3.11: Recommender System Operation 1 

These registered users have already provided to the system various ratings for various 

movies. We assume that these ratings are in the range of 1-5, and they are pure integer 

numbers, like the way users rate in our 50/50 Movie Recommendation system. In the 

next picture, we can see that these ratings get through the collaborative filtering engine, 

after they are stored within the systems database, and they then used to make user 

correlations, meaning, finding and grouping users who share the shame taste.  
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This correlation, which we call pairwise correlation, is represented by a number which 

is close to 1 if two users share similar tastes and close to -1 if they don’t. If the pairwise 

correlation is close to 0, then this means that they sometimes share the same interests 

and sometimes not. One really important factor is to also count the pieces of data these 

correlations are based on because that way we will be able to compute the overall 

pairwise correlation of two users and not just their correlation on one simple movie. 

 

Picture 3.12: Recommender System Operation 2 
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After all these calculations are done, it’s time for the active user to make a request. That 

usually translates into asking a recommendation from the recommendation system. In 

our Movie recommender system it means “suggest a list of movies that I will enjoy." 

 

Picture 3.13: Recommender System Operation 3 
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Now, we can see on the next picture how collaboration filtering engine takes action. 

When the request from the active user comes in, the system uses the correlations that 

were calculated previously to find the nearest neighbors (users) that have similar tastes 

with our active user. This is the K-nearest neighbor method and is the one we used for 

this project. So, the people in red are actually the users who have the highest correlation 

with the active user, meaning that the correlation score is close to 1 as we mentioned 

earlier. 

Final step is to have those strongly correlated users ratings combined by our 

collaborative filtering engine and suggest movies to the active user. 

 Picture 3.14: Recommender System Operation 4 
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3.9 Understanding The Computations  

Here follows a really simple example of how a small movie recommender system works 

and how the calculations and computations are made to make the final movie 

recommendations. In the next table, we can see a rating matrix with 7 different users 

and their ratings for 6 different movies. What is our main goal is to predict if the active 

user will enjoy more Trainspotting or Liar Liar and recommend it to him. 

Table 3.2: Computations 1 

  
Titanic Alien Terminator 

Forrest 
Gump 

Trainspotting Liar liar 

Active User 4 1 2 4     

John 1 5 4   5   

Peter 1 1 1 1 1 1 

Joe 4 1   3     

Mary 1 3 1 3   1 

Bill 5 1       5 

Jenny 4   1   1   

 

 So first, as we previously said, we are looking for users who share similar tastes to the 

active user. One of those users in our example is Jenny, as she gave Titanic the same 

rating as the active user and Terminator a pretty close one too. 

Table 3.3: Computations 2 

  Titanic Alien Terminator Forrest Gump Trainspottinq Liar liar 

Active User 4 1 2 4     

John 1 5 4   5   

Peter 1 1 1 1 1 1 

Joe 4 1   3     

Mary 1 3 1 3   1 

Bill 5 1       5 

Jenny 4   1   1   
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Next, we can also notice that the active user and John don’t share the same taste in 

movies which even that might be helpful if used in a reversed sense. 

Table 3.4: Computations 3 

  Titanic Alien Terminator Forrest Gump Trainspottinq Liar liar 

Active User 4 1 2 4     

John 1 5 4   5   

Peter 1 1 1 1 1 1 

Joe 4 1   3     

Mary 1 3 1 3   1 

Bill 5 1       5 

Jenny 4   1   1   

 

An interesting situation is Joe and the active user. Joe share really similar tastes with the 

active user but he is not going to be helpful in the recommender system as he hasn’t 

seen any of the two movies we are interested in ( Trainspotting, Liar Liar). 

Table 3.5: Computations 4 

  Titanic Alien Terminator Forrest Gump Trainspottinq Liar liar 

Active User 4 1 2 4 ? ? 

John 1 5 4   5   

Peter 1 1 1 1 1 1 

Joe 4 1   3 ? ? 

Mary 1 3 1 3   1 

Bill 5 1       5 

Jenny 4   1   1   
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So then it’s time for the recommender to make a rating prediction for the movie 

Trainspotting for the active user. The two users who are the most important are John 

and Jenny. Jenny has almost similar tastes to the active user, and she doesn’t like the 

movie and John who has almost the complete different taste, likes the movie a lot. 

Those two facts can lead to the conclusion that the active user won’t probably like 

Trainspotting. 

Table 3.6: Computations 5 

  Titanic Alien Terminator Forrest Gump Trainspottinq Liar liar 

Active User 4 1 2 4 ? ? 

John 1 5 4   5   

Peter 1 1 1 1 1 1 

Joe 4 1   3     

Mary 1 3 1 3   1 

Bill 5 1       5 

Jenny 4   1   1   

 

Now we have to follow the same procedure for the movie Liar Liar but the only safe 

evidence we have is that Bill who has similar taste to the active user, gave it an 

excellent rating. That means that the recommender system would most likely pick Liar 

Liar to recommender to the active user. 

Table 3.7: Computations 6 

  Titanic Alien Terminator Forrest Gump Trainspottinq Liar liar 

Active User 4 1 2 4 ? ? 

John 1 5 4   5   

Peter 1 1 1 1 1 1 

Joe 4 1   3     

Mary 1 3 1 3   1 

Bill 5 1       5 

Jenny 4   1   1   
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4 HUMAN FACTOR AND THE 
BIG FIVE PERSONALITY 
TEST 

4.1 Human Factor 

Human factor is the procedure of designing systems and products, which take into 

special account the interaction between them and the people who will use them. This 

practice is widely used in industrial design and engineering and has seen contributions 

from psychology, physiology and anthropometry. Human factor is α way to optimize 

the best user experience and overall system performance. As mentioned in the 

International Ergonomics Association, the official definition of human factor is the 

following:  

“Ergonomics (or human factors) is the scientific discipline concerned with the 

understanding of interactions among humans and other elements of a system, and the 

profession that applies theory, principles, data and methods to design in order to 

optimize human well-being and overall system performance.” 

Also, we find another definition in the following quote from the U.S. National Academy 

of Engineering’s: 

“Engineers and engineering will seek to optimize the benefits derived from a unified 

appreciation of the physical, psychological and emotional interactions between 

information technology and humans. As engineers seek to create products to aid 

physical and other activities, the strong research base in physiology, ergonomics and 

human interactions with computers will expand to include cognition, the processing of 

information, and physiological responses to electrical, mechanical and optimal 

stimulation” 
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In this dissertation, we implement the human factor in the recommender systems and try 

to maximize the user-system interaction and make the user trust the recommender more. 

Our way of doing that is by incorporating the Big Five personality test which helps the 

recommender understand better each user and filter the recommendations based on the 

active user’s personality. 

Every system has a goal. The goal of our Movie Recommender is to provide the best 

movie recommendations for every different user, based on his personality and his 

previous movie ratings. To achieve this goal, both the system and the user must operate 

in a correct and meaningful way. The efficiency of the system is totally dependable on 

both the performance of the recommendation engine and the performance of the user. 

That means that if the recommendation engine is poorly designed and provides bad 

recommendations, or it demands too much effort from the user to operate, the user will 

lose interest and trust, and the system will fail. Likewise, if the user doesn’t trust the 

system from the beginning and provides false ratings or doesn’t fulfill the Big Five 

personality test, then the system again will fail.  

In the following picture, we can see a clear version of the Human- Movie recommender 

interaction. We can see that both are a combination of different subsystems used for 

input, processing and output. Below we will examine and explain the complete 

procedure that the human must follow, so that the system will operate correctly. 

 

Picture 4.1 Human-Movie Recommender Interaction 
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First, the user must act and provide ratings to the recommender. Without the action 

from the user, the movie recommender won’t have an input and won’t be able to 

operate. The central algorithm of the recommender system is completely analogous to 

the knowledge and preferences of the user. The algorithm of the movie recommender 

works based on other user's preferences and also needs the active user’s preferences to 

operate. Finally, the recommender produces recommendations and the user must have 

an understanding for those recommendations so to trust the recommender and use it 

again in the future. 

Furthermore, the following diagram is pretty helpful to describe the exact procedures 

we had to make to complete this dissertation project.  First, in the movie recommender 

system, we researched the cold start problem so that the user will provide the best 

ratings to the recommender system. A big plus is the Big Five personality test but 

currently there is no need to include it in the diagram. Second, we designed a fast and 

efficient algorithm that produces recommendations based upon the user nearest 

neighbors. Last but not least, we presented the final recommendations. 

So a good recommendation system has all the above characteristics, but the human 

factor can contribute massively to its usability. As we mentioned earlier, our way of 

adding the human factor into this movie recommender system is by introducing the 

human personality into the equation. This addition makes it easier for the system to 

communicate and understand the user’s needs. There is always a tradeoff between 

usability and flexibility but in our case, we believe that the user must pass all the 

appropriate procedures so that the recommender gets the most information.  

Last but not least, there are for sure some drawbacks in the addition of the Personality 

test into the movie recommender system, and they correlate a lot with some general 

weaknesses of the Human Factor and ergonomics methods. First, with the addition of 

the Big Five personality test, it takes more time for the user to sign in and more 

resources of information than the usual sign in methods used in other movie 

recommender systems. Second, extra planning and research were needed to make the 

algorithm take into account the personality scores of each user. And finally, there are 

many methods to detect the active user's personality and there is no correct way to do it, 

so it’s completely subjective and depends only to the judge of the programmer. 
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4.2 Background On The Big Five Personality Test 

The Big Five personality test is considered to be one of the most accepted ways to 

identify the personality of a person in modern academic research and psychology. It’s 

actually the result of a statistical study of the answers to specific questions ( personality 

items) people from Western Europe and America provided. The researchers then can 

use this data to find the best ways to summarize an individual. 

Although, there were many personality variables, Extraversion, Agreeableness, 

Conscientiousness, Neuroticism and Openness to Experience where the ones that stood 

out the most and the ones that are being used in the Big Five Personality Test. 

4.3 What Are The Big Five traits? 

The big five personality test helps you calculate your score for five different personality 

traits, which are the following as stated [14]: 

• Extroversion (E) is the trait of seeking fulfillment from sources outside the self or in 

community. High scorers tend to be very social while low scorers prefer to work on 

their projects alone. 

• Agreeableness (A) reflects how much individuals adjust their behavior to suit others. 

High scorers are typically polite and likeable people. Low scorers tend to 'tell it like it 

is'. 

• Conscientiousness (C) is the personality trait of being honest and hardworking. High 

scorers tend to follow rules and prefer clean homes. Low scorers may be messy and 

cheat others. 

• Neuroticism (N) is the personality trait of being emotional. 

• Openness to Experience (O) is the personality trait of seeking new experience and 

intellectual pursuits. High scores may day dream a lot. Low scorers may be very down 

to earth. 
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4.4 Some Issues With The Big Five Personality Test 

It is important to point out that there are many aspects of the human personality and 

psychology that the Big Five Personality Test can’t portray.  When we are talking about 

“traits” of a person, we are talking about something much narrower and conceptually 

distinct. The Big Five traits are based on empirical and statistical studies, and it’s not a 

theory of personality. This is why we should consider the results of this test to be a 

partial and general description of the user’s personality but on the other hand, that 

would be more than enough for our system, as it minimized the user’s effort and 

provides the general characteristics of the user.  

4.5 Further Analysis Of Each Trait 

Extraversion 

Extraversion is the trait that describes a person being an extrovert. This person is full of 

energy and enthusiasm. They tend to take actions and handle opportunities with 

excitement. They like being the center of attention and starting conversations.  

The opposite of extraversion are people who are introverts. They are quiet and don’t 

like to be around people, but that doesn’t mean they are shy or depressed. They just 

prefer to be alone. 

 

Agreeableness 

People with high Agreeableness tend to be friendly, helpful and ready to compromise 

their needs for others. They are really optimistic and believe that most people are 

trustworthy and honest. They also tend to be more popular 

Users with a low level of Agreeableness are usually selfish and believe that their needs 

are above everything else. They usually don’t help others and are unfriendly and 

sometimes rude. On the other hand, they can be really good in making the correct 

decisions in tough times. 
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Conscientiousness 

Conscientiousness is the trait that has to do with how one person controls his instincts 

and his impulses. A person with high level of conscientiousness is a person who thinks 

about the future and the consequences of his actions. High conscientiousness usually 

means also high intelligence, being able to organize and plan goals and being also able 

to sacrifice short joys for a greater future. You can consider a person with high 

conscientiousness as both wise and cautious at the same time. Conscientious people 

though can be workaholics and perfectionist. 

People with low conscientiousness are usually people who can be more spontaneous 

and fun as they act based on their instincts and impulses than logic. This though may 

lead in many troubles like being antisocial or even expressing a destructive behavior. 

They prefer immediate results and rewards and don’t have the patience to follow a plan 

for a better future. They are unreliable and they usually lack ambition.  

 

Neuroticism 

Neuroticism is the tendency that each person has to experience negative feelings and the 

inability to handle the normal demands of life. People with high neuroticism can 

experience depression, anxiety attacks, bursts of anger and generally everything that has 

to do with extreme reactions to emotions. They are most of the time in bad mood, and 

they can’t think and operate clearly, making it really difficult to take the correct 

decisions as they will be usually under a lot of stress. 

Of course, people who score low on neuroticism are less sensitive in stress and can 

control their emotions better. Negative feelings are not something that concerns them 

and they can stay calm and relaxed even in difficult situations. Although that doesn’t 

imply the opposite, meaning that they are full of positive feelings, as this is a 

characteristic of mostly people with high Extraversion 

  



  -74- 

Openness to experience. 

Openness to Experience is what separates people with big imagination and people who 

are generally down to earth. People with high Openness are usually artistic and curious 

and more connected to their feelings. This trait tends to be a characteristic of people that 

prefer individualism and culture. 

People who score low on openness to experience tends to have common sense and 

narrow interests. They are  straightforward people and may even consider art, science 

and music something useless and with no point. They are generally conservative and 

resist to any change, positive or negative. 

4.6 Big-Five Traits Markers 

Here follows a list of the questions in the Big Five Personality test and the 

corresponding Personality trait that it affects. The + symbol means that the answer on 

these specific questions raises the score of the specific personality trait and the – symbol 

that it lowers it 

 

Extraversion 

 

  

+ 

Am the life of the party. 

Feel comfortable around people. 

Start conversations. 

Talk to a lot of different people at parties. 

Don't mind being the center of attention. 

    

– 
 

Don't talk a lot. 

Keep in the background. 

Have little to say. 

Don't like to draw attention to myself. 

Am quiet around strangers. 
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Agreeableness 

 

 

Conscientiousness 

 

  

+  

Am interested in people. 

Sympathize with others' feelings. 

Have a soft heart. 

Take time out for others. 

Feel others' emotions. 

Make people feel at ease. 

    

–  

Am not really interested in others. 

Insult people. 

Am not interested in other people's problems. 

Feel little concern for others. 

+ 

Am always prepared. 

Pay attention to details. 

Get chores done right away. 

Like order. 

Follow a schedule. 

Am exacting in my work. 

    

– 

Leave my belongings around. 

Make a mess of things. 

Often forget to put things back in their proper place. 

Shirk my duties. 
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Neuroticism 

 

Oppenness 

 

 

+ 

Am relaxed most of the time. 

Seldom feel blue. 

    

– 

Get stressed out easily. 

Worry about things. 

Am easily disturbed. 

Get upset easily. 

Change my mood a lot. 

Have frequent mood swings. 

Get irritated easily. 

Often feel blue. 

+ 

Have a rich vocabulary. 

Have a vivid imagination. 

Have excellent ideas. 

Am quick to understand things. 

Use difficult words. 

Spend time reflecting on things. 

Am full of ideas. 

    

– 

Have difficulty understanding abstract ideas. 

Am not interested in abstract ideas. 

Do not have a good imagination. 
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4.7 Big Five Traits And Human Characteristics  

The following table will help understand and relate some basic human characteristics 

with the Big Five Personality traits. We also provide the opposite trait so that it will be 

easier to get an idea about what approximately is each trait. 

Table 4.1: Connecting Traits with Human Characteristics 

Big Five Traits Opposite trait Facets 

Extraversion Introversion 

Gregariousness (sociable) 

Assertiveness (forceful) 

Activity (energetic) 

Excitement-seeking (adventurous) 

Positive emotions (enthusiastic) 

Warmth (outgoing) 

Openness 
Closedness to 

experience 

Ideas (curious) 

Fantasy (imaginative) 

Aesthetics (artistic) 

Actions (wide interests) 

Feelings (excitable) 

Values (unconventional) 

Conscientiousness Lack of direction 

Competence (efficient) 

Order (organized) 

Dutifulness (not careless) 

Achieve merit striving (thorough) 

Self-discipline (not lazy) 

Deliberation (not impulsive) 

Neuroticism Emotional stability 

Anxiety (tense) 

Angry hostility (irritable) 

Depression (not contented) 

Self-consciousness (shy) 

Impulsiveness (moody) 

Vulnerability (not self-confident) 

Agreeableness Antagonism 

Trust (forgiving) 

Straightforwardness (not demanding) 

Altruism (warm) 

Compliance (not stubborn) 

Modesty (not show-off) 

Tender-mindedness (sympathetic) 
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4.8 Big Five Personality Test Questions 

Here are the questions that the user has to answer so that we can understand the way he 

acts and how his personality is structured.  The user must answer these questions and 

describe him as he is now and not as he wishes to be in the future.  In order to do that, 

the user can make a comparison between him and other people similar to his age and 

sex. As we have previously mentioned, the user has to score the questions with an 

answer from 1-5 where,  

• 1=disagree,  

• 2=slightly disagree,  

• 3=neutral,  

• 4=slightly agree and  

• 5=agree.   

Before all the questions we have the prefix “ I “ . 

1. Am the life of the party. 

2. Feel little concern for others.  

3. Am always prepared.  

4. Get stressed out easily.  

5. Have a rich vocabulary.  

6. Don't talk a lot.  

7. Am interested in people.  

8. Leave my belongings around.  

9. Am relaxed most of the time.  

10. Have difficulty understanding abstract ideas. 

11. Feel comfortable around people.  

12. Insult people.  

13. Pay attention to details.  

14. Worry about things.  

15. Have a vivid imagination.  

16. Keep in the background.  

17. Sympathize with others' feelings. 
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18. Make a mess of things.  

19. Seldom feel blue.  

20. Am not interested in abstract ideas.  

21. Start conversations.  

22. Am not interested in other people's problems.  

23. Get chores done right away.  

24. Am easily disturbed.  

25. Have excellent ideas.  

26. Have little to say. 

27. Have a soft heart. 

28. Often forget to put things back in their proper place. 

29. Get upset easily. 

30. Do not have a good imagination. 

31. Talk to a lot of different people at parties. 

32. Am not really interested in others. 

33. Like order. 

34. Change my mood a lot. 

 35. Am quick to understand things. 

36. Don't like to draw attention to myself. 

37. Take time out for others. 

38. Shirk my duties. 

39. Have frequent mood swings. 

40. Use difficult words. 

41. Don't mind being the center of attention. 

42. Feel others' emotions. 

43. Follow a schedule. 

44. Get irritated easily. 

45. Spend time reflecting on things. 

46. Am quiet around strangers. 
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47. Make people feel at ease. 

48. Am exacting in my work. 

49. Often feel blue. 

50. Am full of ideas. 
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4.9 Scoring In Big Five Test 

When all the questions are answered, the five personality traits are being calculated with 

the following formulas, where the number in brackets is the corresponding question and 

next, you put the number on the range of 1-5 you previously put in an answer: 

 

Extraversion = 20 + (1) ___ - (6) ___ + (11) ___ - (16) ___ + (21) ___ - (26) ___ + 

(31) ___ - (36) ___ + (41) ___ - (46) ___ = _____ 

 

Agreeableness = 14 - (2) ___ + (7) ___ - (12) ___ + (17) ___ - (22) ___ + (27) ___ - 

(32) ___ + (37) ___ + (42) ___ + (47) ___ = _____ 

 

Conscientiousness = 14 + (3) ___ - (8) ___ + (13) ___ - (18) ___ + (23) ___ - (28) ___ 

+ (33) ___ - (38) ___ + (43) ___ + (48) ___ = _____ 

 

Neuroticism = 38 - (4) ___ + (9) ___ - (14) ___ + (19) ___ - (24) ___ - (29) ___ - (34) 

___ - (39) ___ - (44) ___ - (49) ___ = _____ 

 

Openness = 8 + (5) ___ - (10) ___ + (15) ___ - (20) ___ + (25) ___ - (30) ___ + (35) 

___ + (40) ___ + (45) ___ + (50) ___ = _____ 
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An important note here is to mention that in any kind of personality test, there is no 

actual average value. “Norms” are really misleading and generally should be avoided 

because one person’s score could never be a representative value or subset in a 

population. The correct way to find the average values for each trait is to find the 

average value of each trait on the sample that was used, meaning, the people we 

evaluated our recommender. 

Here follows the average values of each trait based on the 30 different users we tested 

our recommender. Every value below this score is considered a low value and every 

value above, a high value. 

 

Extraversion: 3.45 

Agreeableness: 3.96 

Conscientiousness: 3.46 

Neuroticism: 3.128 

Openness: 3.86 

 

On the next page we present again some human characteristics based on if the user has 

scored high or low on a specific trait. 
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Neuroticism 

 Low 

 

High 

Stable 

 

Tense 

Calm 

 

Anxious 

Contented 

 

Nervous 

Unemotional 

 

Moody 

  

Worrying 

  

Fearful 

   

 

Agreeableness  

 Low 

 

High 

Cold 

 

Sympathetic 

Unfriendly  Kind 

Unking 

 

Appreciative 

Cruel 

 

Warm 

Thankless  Generous 

Fault-Finding  Trusting 

  

 

Conscientiousness  

 Low 

 

High 

Careless 

 

Organized 

Irresponsible 

 

Thorough 

Forgetfull 

 

Efficient 

Frivolous 

 

Responsible 

Undependable 

 

Reliable 

Slipshot 

 

Precise 

  

 

Extraversion 

 Low 

 

High 

Quiet 

 

Sociable 

Reversed 

 

Forceful 

Shy 

 

Energetic 

Silent 

 

Adventurous 

Withdrawn 

 

Enthusiastic 

Retiring 

 

Outgoing 

   

 
Openness 

 

Low 

 

High 

Narrow interests  Imaginative 

Simple 

 

Intelligent 

Shallow 

 

Original 

Unintelligent 

 

Insightful 

  

Artistic 

  

Clever 
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5 DESIGN OF THE 50/50 
MOVIE RECOMMENDER 

5.1 Overview 

The movie recommender we designed is called the 50/50 Movie Recommender system. 

As mentioned before, it’s a Movie recommender that takes into account the personality 

of the active user. It is based on collaborative filtering techniques and the Knn algorithm 

with the addition of the Big Five Personality test, which filters the final 

recommendations based upon the user's genre preferences. 

5.2 MovieLens Dataset 

The dataset we used is the MovieLens 100k database. It’s a stable benchmark dataset, 

developed and collected  by the GroupLens Research Progject, that includes 100.000 

ratings from 1000 users on 1700 movies. It was released in 1998. It’s really important 

that all the users in the Database have rated at least 20 movies, which helps the Knn 

operate as it makes it easier to find neighbors to the active user. 

The MovieLens Database includes the following files that were using in our system: 

 

A. U.data: The dataset with 100.000 rating by 943 users on 1682 movies. All users 

and items are numbered consecutively from 1. There is also a timestamp tab 

which was removed as it was not needed. On the next table, the head of U.data is 

presented: 

Table 5.1: U.data Head 

  userid itemld rating 

0 196 242 3 

1 186 302 3 

2 22 377 1 

3 244 51 2 

4 166 346 1 
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B. U.item: Information about the movies. This includes movie id, movie title, 

release date, video release date, Imdb URL and 19 fields that represents the 

different genres, with 1 indicating that the movie is of that genre. Movies can be 

in several genres. We deleted the release date, video release date and Imdb url. 

In addition, we deleted some genres so for the recommender to operate better. 

Explanation in chapter ().On the next table the head of U.item is presented: 

 

Table 5.2: U.item Head 

  
Item-

ld 
title 

Act-
ion 

Adve-
nture 

Ani-
mation 

Car-
toon 

Com-
edy 

Dra-
ma 

Film-
Noir 

Horror 
Rom-
ance 

Scl-FI War 

0 1 
Toy Story 
(1995) 

0 1 0 0 0 0 0 0 0 0 0 

1 2 
GoklenEye 
(1995) 

1 0 0 0 0 0 0 0 0 0 0 

2 3 
Four 
Rooms 
(1995) 

0 0 0 0 0 0 0 0 0 0 0 

3 4 
Get SHorty 
(1995) 

1 0 0 0 0 0 0 0 0 0 0 

4 5 
Copycat 
(1995) 

0 0 1 0 0 0 0 0 0 0 0 
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5.3 Extra Information Added 

Apart from the MovieLens database, two more important tables were used to help the 

operation of our system: 

 

A. 5 factor table: This is a table we created that includes the information 

provided on (). We deleted the cult, foreign, independent, tragedy, parody 

genres because they are not included in the Movielens dataset. For further 

information about this table check 2.4.5. 

Table 5.3: Five Factor Table 

 
OPE CON EXT AGT NEU 

action 3.87 3.45 3.57 3.58 2.72 

adventure 3.91 3.56 3.54 3.68 2.61 

animation 4.04 3.22 3.26 3.35 3.02 

cartoon 3.95 3.33 3.49 3.57 2.81 

comedy 3.88 3.44 3.58 3.6 2.75 

drama 3.99 3.43 3.66 3.6 2.86 

film-noir 4.34 3.35 3.33 3.37 2.97 

horror 3.9 3.38 3.52 3.47 2.91 

romance 3.84 3.48 3.62 3.62 2.85 

sci-fi 3.99 3.55 3.33 3.57 2.73 

war 3.82 3.51 3.49 3.5 2.71 
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B. Most rated movies table: This is a table we created with Microsoft Excel. It 

includes the most rated movies from the Movielens Dataset in Descending 

order. It is used to help solve the cold start problem be providing some 

famous movies for the user to rate at the beginning of the recommendation 

process. Here follows the head of the table: 

Table 5.4: Most rated movies Table 

MOVIE NAME MOVIE ID NUMBER OF RATINGS 

Star Wars (1977) 50 583 

Contact (1997) 258 509 

Fargo (1996) 100 508 

Return of the Jedi (1983) 181 507 

Liar Liar (1997) 294 485 

English Patient. The (1996) 286 481 

Scream (1996) 288 478 

Toy Story (1995) 1 452 

Air Force One (1997) 300 431 

Independence Day (ID4) (1996) 121 429 

Raiders of the Lost Ark (1981) 174 420 

Godfather. The (1972) 127 413 
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5.4 Assumptions 

 It’s important to make some assumptions about the data and the recommender so 

to avoid technical problems, at least in this research stage. Here are the assumptions we 

made:  

a) The items set do not change. Meaning that our database remains stable and no 

new movies are added. 

b) The users set do not change. Meaning the database with the different users and 

their different ratings does not change. Even though the new user enters the 

system and passed his name, the addition of his record to the user database is 

only temporary. 

c) There is no browse history. We don't take into account what the user browses, 

only what movies he has already rated. 

d) Always a fixed number of movies are recommended at the end to the user. 

e) The user doesn’t change his personality through time. 

5.5 System Architecture  

Our movie recommender consists of some different components and operations. Here 

follows the basic steps of how it operates: 

 

• Input : Movielens database, 5 factor table, most rated movies table 

• Output : Three sets of movie recommendations, one pure knn, one 50% knn 50 

% personality, one 20% knn 80% personality 

• Steps of Algorithm : 

1. Start 

2. User enters the system 

3. Load Movielens dataset and 5factor and most rated movies tables 

4. Active User Movie Rating Function 

5. Active User Personality Test Function 

6. Present the three different sets of movie recommendations 

7. Stop 
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5.6 Main Flow Chart Explanation 

On the next page we provide the Main flow chart of our recommender system. 

 

Picture 5.1:Main Flow Chart 
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So the user enters the system with the intention to have some movies recommended to 

him.  Then we import the movieLens Dataset, and the Top rated movies table and 

proceed to the movie rating function. 

Then a Movie Rating function is used to solve the cold start problem for the new user, as 

the system knows nothing about his movie preferences. Next, the user is asked to fulfill 

the big five questionnaire which is what the Big Five Personality Function actually is. 

Last function is the Combining Personality with Knn Function, which is the one that 

combines the Knn movie recommendations with the personality of the active user. Here 

follows some further analysis of each function and their corresponding flow chart. 
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5.7 Movie Rating Function Flow Chart Explanation 

On the next page we provide the Movie Rating Function chart of our recommender 

system. 

 

Picture 5.2:Movie Rating Function Flow Chart  
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So this function is basically used to solve the cold start problem, meaning that the 

system knows nothing about the active user and there needs to be a way for the user to 

provide information to the system. 

So, first a list of 20 movies is presented to the user. Here we use the MostRatedMovies 

table, and we present one movie from this table and one random from the whole dataset 

alternately. That way, we avoid providing biased movies to rate and at the same time 

manage to suggest some famous and some not so well known movies. An example is 

presented on the following table. 

Table 5.5:Movies Presented to the User 
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If the user cannot find any movie that he knows on the list, he just enters -1 and a new 

list is presented to him, following the same concept, one movie from the 

MostRatedMovies table and one random alternately. 

This goes on until the user has rated 20 movies, which a pretty good number for the 

Collaborative algorithm to work. The system then uses collaborative techniques to find 

the K-nearest neighbors of the active user, meaning users that have a similar taste to 

him. The pairing is done as we said before, with the help of the Pearson Correlation and 

the following formulas. 

  

Corr(x,y)=  

Equation 5.1:Pearson Correlation 3 

Next step is to predict the ratings the active user will give to all the movies he 
hasn’t seen, based on his K- nearest neighbors. The function used for calculating 
the predicted rating is the following: 

 u ,i u a,uu U
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Equation 5.2:Predict Rating Formula 2 
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Last, a table with all the predicted ratings, plus the ones he provided at the beginning, is 

made. This is the most important list in our system as it’s the basis in the application of 

the 50/50 and 80/20 calculations later.  

Table 5.6: Predicted Ratings 

itemld Rating 

1 7,29552 

2 2,87429 

3 2,87429 

4 2,87429 

5 2,87429 

6 2,87429 

7 -2.34085 

8 2,87429 

9 -1.42448 

10 2,87429 
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5.8 Big Five Personality Test Function Flow Chart 

Here we provide the Big Five Personality Test function of our recommender system. It's 

just a function that presents to the user all the questions from the Personality Test. Then 

the system calculates the active user’s big five traits score, based on the method 

explained on 4.9. 

 

 

Picture 5.3:Big Five Test Function 

  



  -96- 

5.9  Combining Personality With Knn Flow Chart 

Here we provide the Combining Personality With Knn function of our recommender 

system. This is a function that we designed and implemented, and it’s the main 

contribution of this Dissertation. 

 

 

Picture 5.4:Combining Personality with Knn Function 
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So, first the 5factor table is loaded which, as we mentioned, is a table that includes the 

information provided on ().  

Table 2.7: Correlation between Genre and Big Five Traits 

 

What we do next is we take the score of the Big Five Traits of the active user, which we 

calculated previously on the Big Five Personality Test Function. Let’s say that the 

active user has the following results: 

 

Openness: 3.87 

Conscientiousness: 3.56 

Extraversion: 3.53 

Agreeableness: 4.7 

Neuroticism: 2.89 

  



  -98- 

Based on these results, we can check the 5factor table and see at first sight which genres 

the active user prefers based on his personality. 

Table 5.8:Genre Preferences of User 

 

  



  -99- 

What we do next to make the algorithm more accurate is to take the active user’s trait 

scores and the scores for each genre from the 5factor table and subtract them. Here 

follows an example on the Action and the Adventure genre 

In the following table you can see the big five scoring for the active user and the scoring 

for the action and adventure genre. 

Table 5.9: Calculating 50/50 1 

USER PERSONALITY TRAITS 

  ope con ext agr neu 

active user 3,60 3.9 2.3 4,70 3,30 

 

GENRES 

  ope con ext agr neu 

action 3,87 3.45 3.57 3,58 2,72 

adventure 3,91 3.56 3.54 3,68 2,61 

 

We now subtract each trait of the active user from the corresponding trait of all the 

different genres. We take the absolute value of the result because our main goal is to 

add all the final trait scores and calculate a distance metric. The higher the value of this 

distance metric for the user and a specific genre, the less he likes that genre.  Here in 

our example with only the action and adventure genre in mind, we can say that our user 

has a slight preference towards the adventure genre as he has a lower score, meaning 

that his big five scores are closer to the scores of the adventure genre. 

Table 5.10: Calculating 50/50 2 

  
ope con ext agr neu 

PERSONALITY 
SCORE 

action |3.6-3.87| |3.9-3.45| |2.3-3.57| |4.7-3.58| |3.3-2.721 3,69 

adventure |3.6-3.91| |3.9-3.56| |2.3-3.54| |4.7-3.68| |3.3-2.61| 3,6 
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We do the same calculations for all the genres and then create a table that includes these 

results in an ascending order. 

Table 5.11: Final 50/50 genre preferences 

sci-fi 3,47 

romance 3,51 

war 3,59 

adventure 3,6 

horror 3,66 

comedy 3,67 

action 3,69 

animatior 3,71 

cartoon 3,73 

drama 3,76 

film-noir 3,98 

 

These are the genre preferences of the active user based on his personality. 

Next step is to rearrange the Knn Movie List based on these genre preferences. We will 

explain this with an example. 

Let’s assume that the Knn algorithm predicted that the active user will provide a rating 

of 4 on Star Wars and a rating of again a 4 on Psycho. Star wars is a sci-fi movie, and 

Psycho is a Horror movie. What our algorithm does, is to go and find which genre is 

each movie on the knn list and then make some calculations and provide the 50/50 and 

80/20 lists. 

So for the 50/50 way, our recommender takes the predicted rating of the Star Wars 

movie and divides it by 2. Then, assuming that Star Wars is only a Sci-Fi movie, it also 

takes the value of the sci-fi genre from the previous table and divides it with 2. 

What this does, is that by diving by 2, we imply a 50 % to the Knn rating and a 50 % to 

the personality. If we add those two values, we get a new pseudo rating for the Star 

Wars movie, which is 3.735. 

By applying the same concept to the Psycho movie, we can see that the new pseudo 

rating for the psycho movie is 3.83. These pseudo ratings are now nothing more than a 

distance from zero and again, the higher the value, the less you will like this movie. 
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So, if we only had the Knn suggestions, Psycho and Star Wars would be equally 

presented to the user as they both have the same predicted rating. However, with the 

addition of the personality factor, Star wars will be suggested first and then Psycho 

Same thing with the 80/20 recommender, with the only difference that we are not 

dividing each value by 2, but we multiply the Knn predicted rating with 0.2 and the 

Personality genre rating with 0.8. That way, we put more emphasis on the personality 

than the Knn, because now personality is 80% and Knn 20% 

If  a movie belongs in more than one genre, we do the following: 

Let’s assume that the Knn suggests GoldenEye with a predicted rating of 4, which is 

both an Action and an Adventure movie. First, again we divide the Knn score by 2. 

Then, based on Table 5.3: Five Factor Table, we add 3.6 (adventure preference value) 

and 3.69 (action preference value)    it by the number of genres this movies belongs to.  

 

So for the 50/50 recommender we have:  

3 6 3 69 4
2

2 2

. .
/

 
 

 
 = 3.822 

Equation 5.3: 50/50 example equation 

 

which is the final predicted rating for Golden Eye. 
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So, the last step is to recalculate the new distance values for each movie in the knn list 

and make it in ascending order, as now,  the closer to 0 the better the recommendation. 

We do this for both the 50/50 and the 80/20 methods and print the three different lists to 

the user. Here follows an example: 

 

Here are the genre preferences of the user: 

Table 5.12: 50/50 User genre Preferences 

cartoon 2,38 

sci-fi 2,42 

drama 2,43 

horror 2,43 

action 2,45 

adventure 2,52 

comedy 2,57 

animatior 2,59 

romance 2,64 

war 2,74 

film-noir 3.02 
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Here is the Knn movie list: 

 

 

The 50/50 movie list: 

 

The 80/20 movie list 
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We can clearly see that the 80/20 list is really close to the personality genre preferences 

of the user, but the most well balanced is the 50/50 one, as we also found out during our 

evaluation of the recommender. 

On the 50/50 list, we see the Sci-fi movies rising in the rankings and even horror  

movies like Alien and Psycho appeared on the list, where previously on the Knn list 

they weren’t included. This is because  the user has a preference on Sci-fi and Horror 

movies based on Table 5.12: 50/50 User genre Preferences. 

On the 80/20 list, we see that out of nowhere, a cartoon movie is suggested first, 

because  cartoon is the favorite genre of the active user. We also see the appearance of 

more cartoon movies like Beauty and the Beast, and Wallace & Gromit: The Best of 

Aardman Animation. 
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6 IMPLEMENTATION IN 
PYTHON 

6.1 Functions  

exit_if_file_is_not_found(filename) : 

This is a function that checks if a file being accessed exists, and closes the program if it 

doesn't. It is used each time a file is loaded. 

exit_if_data_are_not_found() : 

Calls the exit_if_file_is_not_found function for all needed files. 

get_user_movie_id() : 

This function gets, checks and validates the user input for the IDs of movies he rates. 

While the input is not valid, the function asks for new input in a loop. If the input is 

valid, it returns it. 

get_user_rating(TAINIA) : 

This function gets, checks and validates the user input for the rating of movies he rates. 

While the input is not valid, the function asks for new input in a loop. If the input is 

valid, it returns it. 

newUser(ratingsmatrix) : 

This function creates a new user and prompts him/her to rate 20 movies. It reads movies 

from a file that contains the movies sorted by popularity (number of votes) and then 

presents to the user a list of 20 movies each time: 10 movies from the top of the list and 

10 random choices. The user can pick a movie by ID and rate it (using 

get_user_movie_id and get_user_rating functions) or refresh the list. 

myBestMovies(me,N) : 

This function retrieves the N best rated movies for a given user. 

correlation(u,v) : 

Finds the Pearson correlation between two users. 
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userPairSimilarity(user1, user2) : 

Returns the similarity between two users, by checking their common movies and using 

the above correlation function. 

nearestNeighbourPredictions(user, K) : 

This function calls the userPairSimilarity function for the active user and all other users. 

Then it uses the K most similar users and their ratings to predict a rating that the active 

user would give for all the movies in our dataset. It returns an array that contains all 

movies and their predicted rating. 

finalNRecommendations(user, N) : 

This function takes the predicted ratings array calling the above function, sorts it in 

descending order (best rating to worst) and returns the N top ones, after droping all 

movies already rated by the active user. 

RatingsNormalized(user) : 

This function normalizes the ratings in the predicted ratings array in the range (0-5). 

knnPersonality5050(genreSum, myItemDatabase, movieNum, genreNum, 

normalizedTable): 

and 

knnPersonality8020(genreSum, myItemDatabase, movieNum, genreNum, 

normalizedTable): 

These functions take the normalized KNN ratings from RatingsNormalized and alter 

them based on the personality of the user, equally weighting KNN and personality in the 

first case and favoring the KNN in the second case. They return a new normalized table 

with revised ratings. 

finalNRecommendationsPersonality(tab, user, N) : 

Takes the new personality-based normalized rating tables and returns the N top movies. 



  -108- 

6.2 Program Flow, Details And Explanation 

Lines 8-9: 

At first, the program gets its path name and directory to use for locating all the 

neccessary files regardless of the machine it's being run on. 

Lines 12-16:  

The exit_if_file_is_not_found function is defined. 

Lines 18-26: 

The program then checks on what OS the program is run (by checking the os.name 

attribute) and sets a descriptor variable to "/" in the case of Posix, or "\\" otherwise, to 

ensure that the program will run on different platforms: 

 

Lines 28-32: 

Here the paths to the data needed by the program are defined, concatinating the 

directory string retrieved before (line 9), the descriptor variable ('\\' or '/' depending on 

the OS) and the file name. The files defined are: 

movieLensFile: The u.data file from the movieLens database, containing the ratings of 

all users for all movies they have rated. 

movieLensItemFile: The u.item file from the movieLens database, containing 

information about the movies such as name, actors and genres. 

FiveFactorFile: 

mostRatedFile: A file containing all movies sorted by the number of votes (most to 

least). 
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Lines 34-39: 

Next, the program checks if the files defined above exist by calling the 

exit_if_file_is_not_found function for each file. If a file does not exist, the function 

aborts the program. 

Lines 42-73: 

If all needed files exist, the program defines the get_user_movie_id function. This 

function is used inside the newUser function that gets defined later, and gets/checks the 

user input for the movie id he wants to rate, inside a loop. If the input is valid the loop 

breaks and the function returns it, but it keeps asking for new input if: 

a)The input has a '0' prefix (leads to failure if left unchecked) 

 

b)The input is outside the [0,1682] range (valid movie IDs) and is not -1 (valid input - it 

is used to refresh the list) 

 

c)The input is not an integer 

 

  



  -110- 

Lines 75-107: 

In the next lines, the function get_user_rating is defined. It asks the user to rate the 

selected movie and takes the name of the movie as an argument (in order to print it 

when asking for a rating). Like the previous function, it asks for input in a loop, which 

breaks only if the input is valid, otherwise it keeps asking. The input is considered not 

valid if: 

a)The input has a '0' prefix (similar case to the one in the getUserRating function) 

b)The input is not an integer: 

 

c)The input is outside the [1,5] range (valid rating values): 

 

 If the input is valid, it is returned. 

Lines 109-255: 

Next, the function newUser is defined. This function initiates a loop which repeatedly 

asks the user to rate movies from a list, until the user has rated 20 movies. The user can 

choose a movie from the list (by ID) to rate, or refresh the list by giving -1 as input. 

After informing the user on what he needs to do, the function loads a pandas DataFrame 

(myRatedDatabese) containing all the movies available in descending order (most rated 

to least rated). It then defines a variable to be used as a counter for the number of 

movies rated (cnt) and enters a loop that is going to be terminated only when the 

counter is equal to 20. The movies are presented in the following fashion: 
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-Five integer variables are created, ii (used to mark the start of the section of the 

myRatedDatabase movies that the program is printing at any moment), jj (used to mark 

the end of it), icount (used to represent the row of the 20-row dataframe that the movie 

is going to be put in), jcount (used to represent the column of the dataframe we are 

handling at any moment - there are 2 columns, one for the movie ID and one for the 

movie name)  and cnt (used to count the number of rated movies). jj is always equal to 

ii+10. 

-A new dataframe, named movList, with space for 20 elements and two columns 

(MOVIE_NAME and MOVIE_ID) is created, to hold the 20 movies that will appear on 

screen each time. 

-The program enters a loop that ends only when cnt is larger than 20 (the user has rated 

20 movies). 

-In every iteration, the program puts movies in the [ii,jj] range of the myRatedDatabase 

dataframe in the even numbered elements of the movList dataframe (1,3,5...17,19). 

-For the odd numbered elements of movList (2,4,6....18,20), random movies from the 

[ii,1682] range are used: 

 

-When the movLIst is full, it is prented on screen and the user is asked to either select a 

movie id to rate or type -1 to refresh the list. 

-User input is taken with the use of the get_user_movie_id function. Then, the program 

searched in movList for the selected movie id, and if it is not found it searches in the 

complete list of movies. If the movie id exists, the program asks the user to rate it with 

the use of the get_user_rating function. 
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Lines 229-234: 

The myBestMovies function is defined. It simply sorts the movies rated by the user 

from highest to lowest rating and returns them. 

Lines 238-244: 

The correlation function, identical to the scipy function with the same name, meassures 

the Pearson correlation between two elements (users). 

Lines 247-260: 

The userPairSimilarity function is defined. It takes two user vectors (vectors that 

contain all movies and the ratings of a user for the movies this user has rated, or NaN if 

he hasn't rated a movie) representing two users, and returns the similarity between them.  

First, the two vectors are normalized using the mean rating for each vector.  

 

Then it finds the common movies between the two users. If they have rated no common 

movies, the function returns 0; otherwise, it collects the rating of each user for each of 

the common movies and calls the correlation function to return the correlation between 

them: 
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Lines 265-283: 

Next is the definition of the nearestNeighbourPredictions function. It takes two 

arguments, the userID of the active user and  integer K, representing the number of 

neighbours we want to take into account. 

First, a dataframe named similarities with a single column (labeled 'similarity') is 

created, which the program fills with the similarity of the active user with every other 

user in the database, calling the userPairSimilarity function for the active user and a 

different other user each time: 

 

When the similarities dataframe is finished, it is sorted in descending order and only the 

first K elements ar kept (the similarities of the K most similar to the active user users) 

and saved in a dataframe named nearestNeighbours. 

 

Lines 287-307: 

In the next lines, the function finalRecomendations is defined. This is the function that 

will return the final results of the KNN predictions. It takes four arguements: The active 

user ID, the number N of the movies to recomend, the total number of movies 

(movieNum) and the total number of genres (genreNum). 

-First, the function calls the nearestNeighbourPredictions function to aquire a dataframe 

named predictRating containing the predicted rating of the active user based on his/her 

nearest neighbours. 

 

-Then it makes a list containing the IDs of the movies the active user has already rated, 

named moviesRated. 
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-Next it creates an empty list named noGenreList, and fills it with all the movies from 

the myItemDatabase dataframe that have no genre, by iterating through all the columns 

of each row in the myItemDatabase dataframe and counting the ones in the genre 

section (each genre for each movie has a value of one, if that movie belongs to that 

genre, or zero if it doesn't). 

 

-The function then drops from the recomendation dataframe (predictRating) all movies 

contained in the moviesRated and noGenreList lists, meaning it removes all movies that 

have no genre or are already rated by the user. 

 

-Then the predictRating dataframe is sorted in descending order (highest prediction to 

lowest) and only the N first elements are kept. Using the movie IDs of those N 

elements, their titles are retrieved from the myItemDatabase dataframe and those titles 

are returned as a list. 

 

Lines 310-327: 

Next a function named RatingNormalized is defined. This function takes the result of 

the nearestNeighbourPredictions function and normalizes their values, getting all ratings 

in the [1-5] range. Because the lowest predicted rating can also take negative values, 

this is done in the following manner: 
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-First the function gets the lowest and highest ratings on the predictRating dataframe 

(containing all movies with their predicted ratings) and stores them into a 'maximum' 

and a 'minimum' variables. 

 

-Next, a variable b is defined, which is equal to 0 if the minimum value is not negative, 

and (-minimum) if it is negative. If the minimum value is negative, the function also 

changes the minimum variable to 0 and the maximum variable to 

maximum+|minimum|. 

 

-This variable b is then added to each predicted rating in the predictRating dataframe, to 

bring all values above 0 (if they already were, b is equal to 0 so this has no effect). All 

ratings are then recalculated in the range [1,5] and then they are reversed so that the 

closer they are to zero the better the rating is considered. 

 

-The revised predictRating dataframe is finally returned. 

In line 383, the definitions end and normal program flow is continued. The 

exit_if_data_are_not_found function is called, and if the files needed exist, the program 

goes on and loads them into dataframes: 
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An active userID is also declared as 944 (this is the userID used for any new user, since 

userIDs 1-943 already exist) and a neighbour's variable, representing the number of 

nearest neighbours, we want the algorithm to take into account as 50 (lines 396-397). 

Lines 399-1108: 

Next comes the personality test that will determine the personality profile of the new 

user. Five variables, each representing a Big-Five personality trait, are declared:  

 

After printing some basic instructions (lines 405-412), the program asks the user to 

evaluate 50 questions giving a rating in the range [1,5], with 1 meaning 'I completely 

dissagree' and 5 'I completely agree'. First, the question is printed on screen, and then 

the user input is handles in a loop, so that the user is repeatedly asked for input while 

the input is not valid: 

 

Each question adds or subtracts the given user rating from one of the variables 

representing each of the personality traits (e for extraversion in the above example). 

This goes on until all 50 questions are rated by the user. Then using the proccesses 

explained in the theory section of this study, the final values for the five personality 

traits are deduced (lines 1086 - 1091): 
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Next, the program prompts the user to wait and enters its final stage. 

First, the 'myFiveFactorDatabase' DataFrame is created by reading the file variable 

'FiveFactorFile' defined earlier: 

 

It contains the values of the Big Five traits expected for each of the genres in the movies 

database (the mean trait value for each genre). It contains eleven rows (one for each 

genre) and five columns (one for each trait), excluding the first column which contains 

the genres names. 

After the DataFrame is created, the values deduced for the current user for each trait are 

subtracted from the values in the respective columns (opennes_final from all rows in the 

openness column, agreeableness_final from all rows in the agreeableness column and so 

on), and right after that the absolute value of each trait is taken so that no negative 

values remain. That way, the closer the user is to a specific trait value, the closer to zero  

the result will be: 

 

Next, the program sums all the values for each row (each row represents a genre) and 

makes a new DataFrame, named "genreSum" containing the genre names and that final 

value for each genre. It's now obvious that the closer to zero the result is, the higher the 

chances the current user likes the given genre, according to the theory. 
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Now the program calls the RatingsNormalized function and stores the result in the 

"NormalizedTable" DataFrame. Then it calls the knnPersonality5050 and the 

knnPersonality5050 functions, giving the "RatingsNormalized" and the "genreSum" 

DataFrames as arguements: 

 

 

 

Finally, the program computes and prints the final results for all three methods: 
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7 EVALUATION AND FUTURE 
WORK 

7.1 Evaluation 

For the evaluation part, we sent a modified version of the recommender system to 30 

different people. Out of these 30 people, 10 were female and 20 were male, aged 

between 18 and 65.  

The only difference between the modified version and the final version of the 

recommender is that in the end of the program, in the modified version, we didn’t show 

which result is the Knn, the 50/50 and the 80/20. The users were presented with three 

different sets of movies, and they had to pick between those 3 in order of preference.  

The user had to pick his favourite set based on both what movies were included in the 

set, but also the order of the movies in each set. 

The users replied via email, in the style, of “ I firstly, Prefer set A, then set B and last 

set C." We then created an Excel sheet so to count the final score for each method. The 

first preference of each user was awarded 3 points, the second two points and the last 

one 1 point. You can see the results in the next table. 
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Table 7.1:50/50 Evaluation Table 

gender 50 50 knn 80 20 age 

f 3 2 1 50 

m 2 1 3 26 

f 2 3 1 23 

m 1 3 2 23 

m 2 3 2 29 

m 3 2 1 33 

m 2 3 1 40 

m 3 2 3 30 

m 2 3 1 20 

f 3 1 2 30 

m 3 2 3 60 

f 3 1 2 24 

f 1 3 2 28 

f 2 2 3 18 

f 3 2 1 21 

m 3 2 2 19 

f 2 3 3 30 

m 3 3 2 34 

m 3 3 2 34 

m 3 1 2 32 

m 3 3 2 28 

m 2 3 1 23 

f 3 1 2 30 

m 2 3 1 30 

m 2 3 1 40 

m 1 2 3 35 

m 3 1 2 25 

m 2 1 3 50 

m 3 2 1 30 

f 2 3 1 36 
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There are some cases were, for example, the 50/50 recommender and the Knn presented 

exactly the same movies with the exact order. This is why you might see the same 

points awarded for the two different methods. 

Of course, our main goal was to prove that most people prefer the 50/50 recommender 

over the Knn. The 80/20 was an exaggeration and was just provided as an option so that 

we have an algorithm that uses mostly the personality, as the 80/20 is 80 percent 

personality and 20 percent Knn. 

The results can be seen on the following table: 

Table 7.2: 50/50 Evaluation Table 2 

 
50/50 knn 80/20 

SUM 72 67 56 

% 36.41026 34.35897 29.23077 

 

We can see that there is a small preference towards the 50/50 recommender but if we 

eliminate the 80/20 recommender and recalculate the results, we can notice an 

improvement of 3.62 % which is a significant difference. 

Table 7.3: 50/50 Evaluation Table 3 

 
50/50 knn 

SUM 72 67 

% 52.17391 48.55072 
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7.2 Conclusions 

The general conclusion of this Dissertation project is that indeed personality plays a 

significant part in recommender systems.  We believe that as computer technology 

progresses, human personality and psychology must be further integrated and applied 

and with this project, we made a point on how important personalization can be in the 

modern market. Our 50/50 recommender and the percentage of improvement that it 

made to the Knn algorithm, even though it may seem as a small percentage, it’s actually 

pretty significant, and if you translate that into market value and sales, it makes a big 

difference. 

For some, answering a personality test might be a big effort and something  not needed, 

but you have to make sure that they understand that this test will improve their 

experience and their recommendations. Personally, we believe that it’s worth the effort, 

even more because it’s something you have to do only once and the outcome will be 

significant even in the future. 

7.3 Improvements And Future Work 

A first improvement would be to include more metadata in the future. The only 

metadata we had now was what genre each movie was. Of course, this is something that 

the current MovieLens database purely provided, but we can scrap metadata from 

IMDB and incorporate more content based techniques.  

Furthermore, the movie database is again pretty old, and we need to include more 

modern movies. This was a common complain among young people who evaluated the 

recommender, as they haven’t watched most of the movies included, even though they 

are relatively famous.  

Another addition would be to be able to treat  a new movie entering the system and not 

only a new user. 

The MovieLens database includes also the gender, age and occupation of each user. In 

the future, all of this data can be incorporated so to cluster the users and be able to make 

more accurate predictions. Clustering should be tested even though in the past it didn’t 

provide the best results. 
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Feedback from the user was something we definitely wanted to incorporate but didn’t 

have the time to. User must provide feedback for the recommendations and rate the 

recommendations.  Then we will have three important factors to worry about, his 

personality, his movie preferences and his reaction to the recommendations. Moreover, 

the user should be able to provide feedback for different aspects of the movie like 

acting, plot, movie length, director and so on. Nowadays, recommenders assume that if 

you like a movie, you like anything about the movie, the director, the actors, etc. So, if 

you provide specific feedback as stated above, the recommendations will be more 

accurate.  

In the beginning of this project, we wanted to incorporate a group option to the 

recommender meaning that the recommender system would combine two or more 

different users so to make common recommendations. This group option would 

consider both user’s personalities and movie preferences and find the optimal list of 

movies for them to watch. A further idea was also to incorporate metadata like place, 

date and time in conjunction with the companion option so that you can get a more 

specific recommendation. This will have to be done in an N-dimensional model like the 

one provided below. 

 

Picture 7.1: N-dimensional model 
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Last but not least, a more advanced personality test will be used, even a custom one. We 

are currently looking at other options and trying to minimize the number of questions 

and effort the user has to make to portray his personality into our movie recommender.  
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Script 

1    import sys, os  

2    import numpy as np  

3    import pandas as pd  

4    from numpy import linalg as LA  

5    from random import randint  

6    from scipy.sparse.csgraph import _validation  

7      

8    pathname = os.path.dirname(sys.argv[0])  

9    directory = os.path.abspath(pathname)  

10     

11     

12   # If you cannot find the given 'filename', then exit (1)  

13   def exit_if_file_is_not_found(filename):  

14       if not os.path.exists(filename):  

15           print("Required data file is missing: {0} 

".format(filename))  

16           sys.exit(1)  

17     

18   # Make it cross-platform (Windows + Linux)  

19   if os.name == 'posix':  

20       descriptor = '/'  

21       def clear_screen():  

22           os.system('clear')  

23   else:  

24       descriptor = '\\'  

25       def clear_screen():  

26           os.system('cls')  

27     

28   # Define the required data  

29   movieLensFile = directory + descriptor + 'u.data'  

30   movieLensItemFile = directory + descriptor + 'u.item'  

31   FiveFactorFile= directory + descriptor + '5factortable.csv'  

32   mostRatedFile = directory + descriptor + 'mostratedmovies.csv'  

33     

34   # Test requirements  

35   def exit_if_data_are_not_found():  

36       exit_if_file_is_not_found(movieLensFile)  

37       exit_if_file_is_not_found(FiveFactorFile)  

38       exit_if_file_is_not_found(movieLensItemFile)  

39       exit_if_file_is_not_found(movieLensFile)  

40     

41     

42   def get_user_movie_id():  

43       q = 'Put the movie ID of the movie you want to rate, or -1 to 

refresh list:'  

44       # Fix the '0{1,2,3,4,5,6,7,8,9}' bug  

45       while True:  

46           choice = raw_input(q + '\n')  

47           if choice == '01' or \  

48              choice == '02' or \  

49              choice == '03' or \  

50              choice == '04' or \  

51              choice == '05' or \  

52              choice == '06' or \  

53              choice == '07' or \  

54              choice == '08' or \  

55              choice == '09':  

56               print 'Wrong Movie ID. Please do not use 0 prefix! 

Try again ...'  
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57           else:  

58               # We are not affected from the bug  

59               try:  

60                   choice = int(choice) # Try to convert string to 

integer  

61               except ValueError:  

62                   # If it fails, ask the user again  

63                   print "Wrong Movie ID. This is not a number. 

Please try again ..."  

64                   continue  

65     

66               # If the conversion to integer has been succedded, 

check for its value  

67               if choice < -1 or choice > 1682 or choice == 0:  

68                   # Not acceptable integer value  

69                   print 'Wrong Movie ID. Please try again ...'  

70                   continue  

71               # It's an acceptable integer value  

72               break # Break the loop  

73       return choice  

74     

75   def get_user_rating(TAINIA):  

76       movie = str(TAINIA)  

77       q = "How much would you rate '" + movie + "' ?"  

78       # Fix the '0{1,2,3,4,5,6,7,8,9}' bug  

79       while True:  

80           choice = raw_input(q + '\n')  

81           if choice == '01' or \  

82              choice == '02' or \  

83              choice == '03' or \  

84              choice == '04' or \  

85              choice == '05' or \  

86              choice == '06' or \  

87              choice == '07' or \  

88              choice == '08' or \  

89              choice == '09':  

90               print 'Wrong Rating. Please do not use 0 prefix. Try 

again ...'  

91           else:  

92               # We are not affected from the bug  

93               try:  

94                   choice = int(choice) # Try to convert string to 

integer  

95               except ValueError:  

96                   # If it fails, ask the user again  

97                   print "Wrong Rating. This is not a number. Please 

try again ..."  

98                   continue  

99     

100              # If the conversion to integer has been succedded, 

check for its value  

101              if choice < 1 or choice > 5:  

102                  # Not acceptable integer value  

103                  print 'Wrong Rating. Please insert a value 

between [1-5]:'  

104                  continue  

105              # It's an acceptable integer value  

106              break # Break the loop  

107      return choice  

108    

109  def newUser(ratingsmatrix):  
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110      userID = 944  

111      print 'Welcome!\n'  

112      print 'We will present you a list of movies for rating. 

\nPlease enter the ID of the movie you want to rate and press 

Enter.\nThen put the corresponding rating (integer value in the range 

1-5), with 1 being bad and 5 being excellent'  

113      print '\n\nPress Enter to continue . . .'  

114      useless = (raw_input())  

115      print '\n\n'  

116      myRatedDatabase = pd.read_csv(mostRatedFile, sep=",", 

header=None, names=['MOVIE_NAME', 'MOVIE_ID'], usecols=[0, 1])  

117      print '\n\nMOVIE LIST\n\n'  

118      ii = -9  

119      jj = 1  

120      cnt = 1  

121      movlist = pd.DataFrame(index=range(0, 21, 1), 

columns=['MOVIE_NAME', 'MOVIE_ID'])  

122      while cnt <= 20:  

123          clear_screen()  

124          print "MOVIE = " + str(cnt) + "/ 20"  

125          print "--------------------------------------------------

---"  

126          icount = 0  

127          jcount = 0  

128          ii += 10  

129          jj += 10  

130          movlist.loc[0].loc['MOVIE_NAME'] = ' '  

131          movlist.loc[0].loc['MOVIE_ID'] = ' '  

132    

133          # Refresh the movie list with [ 21 x 2 ] -- print begins 

from row[1] and ends at row [20]  

134          # -------------------------------------------------------

-----  

135          for i in range(ii, jj):  

136    

137              # row[1,3,5,7,9] are **not** random  

138              icount += 1  

139              movlist.loc[icount].loc['MOVIE_NAME'] = 

myRatedDatabase.iloc[i, 0]  

140              jcount += 1  

141              movlist.loc[icount].loc['MOVIE_ID'] = 

myRatedDatabase.iloc[i, 1]  

142              jcount -= 1  

143    

144              # row[2,4,6,8,10] are random  

145              icount += 1  

146              ranc = randint(jj, 1682)  

147              movlist.loc[icount].loc['MOVIE_NAME'] = 

myRatedDatabase.iloc[ranc, 0]  

148              jcount += 1  

149              movlist.loc[icount].loc['MOVIE_ID'] = 

myRatedDatabase.iloc[ranc, 1]  

150              jcount -= 1  

151    

152          # Print to screen  

153          print '\t\t', movlist.to_string(index = False, 

header=False)  

154    

155    

156    
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157          # User input: Ask the user either to pick a Movie or 

refresh the list  

158          # -------------------------------------------------------

----  

159          choice = get_user_movie_id()  

160          if choice == -1:  

161              # Redesign the movielist dataframe (+10 new movies)  

162              continue  

163    

164    

165    

166          # Find the name of the movie based on the User input  

167          # -------------------------------------------------------

-----  

168          found = False  

169          for row in enumerate(movlist.values):  

170              MOVIE_INDEX = row[0]  

171              MOVIE_NAME = row[1][0]  

172              MOVIE_ID = row[1][1]  

173              if ( MOVIE_INDEX == 0 ):  

174                  # The first row is always empty, please SKIP it  

175                  continue  

176              if choice == int(MOVIE_ID):  

177                  TAINIA = MOVIE_NAME  

178                  found = True  

179                  break  

180              elif MOVIE_INDEX >= 1 and MOVIE_INDEX <=20:  

181                  # Search withing the 20 Listed movies atm   

182                  continue  

183    

184          # User selected a number that's not currently displays on 

top 20 list (cheat)  

185          if not found:  

186              for row2 in enumerate(myRatedDatabase.values):  

187                  MOVIE_INDEX = row2[0]  

188                  MOVIE_NAME  = row2[1][0]  

189                  MOVIE_ID    = row2[1][1]  

190                  if ( MOVIE_INDEX == 0 ):  

191                      continue  

192                  if choice == int(MOVIE_ID):  

193                      TAINIA = MOVIE_NAME  

194                      found = True  

195                      break  

196                  else:  

197                      continue  

198    

199          if not found:  

200              print "Internal error. I cannot find the movie with 

such ID."  

201          exit(2)  

202    

203    

204    

205          # User input: Ask the to rate the selected movie  

206          # -------------------------------------------------------  

207    

208          rate = get_user_rating(TAINIA)  

209          print 'You rated ', TAINIA, ' with ', rate  

210    

211    

212    
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213          # Record the user's opinion into the database (aka 

ratingmatrix)  

214          # -------------------------------------------------------

--  

215          df = pd.DataFrame([[long(userID), long(choice), 

long(rate)]], columns=('userId', 'itemId', 'rating'))  

216          ratingsmatrix.loc[len(ratingsmatrix)] = df.loc[0]  

217    

218    

219    

220          # Keep voting until 20 Movies  

221          # -------------------------------------------------------

---  

222          cnt += 1  

223    

224      print '\n\nPlease Wait . . .\n\n'  

225      return ratingsmatrix  

226    

227    

228    

229  def myBestMovies(me,N):  

230    

231      topNMovies=pd.DataFrame.sort_values(  

232          

myUserDatabase[myUserDatabase.userId==me],['rating'],ascending=[0])[:N

]  

233    

234      return list(topNMovies.title)  

235    

236    

237    

238  def correlation(u,v):  

239      umu = u.mean()  

240      vmu = v.mean()  

241      um = u - umu  

242      vm = v - vmu  

243      dist = 1.0 - np.dot(um, vm) / (LA.norm(um) * LA.norm(vm))  

244      return dist  

245    

246    

247  def userPairSimilarity(user1, user2):  

248      user1 = np.array(user1) - np.nanmean(user1)  

249      user2 = np.array(user2) - np.nanmean(user2)  

250    

251    

252      commonMovies = [i for i in range(len(user1)) if user1[i] > 0 

and user2[i] > 0]  

253      # Gives us movies for which both users have non NaN ratings  

254      if len(commonMovies) == 0:  

255          # if there are no common movies that both users have 

rated then it returns 0  

256          return 0  

257      else:  

258          user1 = np.array([user1[i] for i in commonMovies])  

259          user2 = np.array([user2[i] for i in commonMovies])  

260          return correlation(user1, user2)  

261    

262    

263    

264    

265  def nearestNeighbourPredictions(user, K):  
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266    

267      similarities = pd.DataFrame(index=userVectorMatrix.index,  

268                                  columns=['Similarity'])  

269      for i in userVectorMatrix.index:  

270          similarities.loc[i] = 

userPairSimilarity(userVectorMatrix.loc[user], 

userVectorMatrix.loc[i])  

271      similarities = pd.DataFrame.sort_values(similarities, 

['Similarity'], ascending=[0])  

272      nearestNeighbours = similarities[:K]  

273      neighbourVectors = 

userVectorMatrix.loc[nearestNeighbours.index]  

274      predictRating = pd.DataFrame(index=userVectorMatrix.columns, 

columns=['Rating'])  

275      for i in userVectorMatrix.columns:  

276          prediction = np.nanmean(userVectorMatrix.loc[user])  

277          for j in neighbourVectors.index:  

278              # for each neighbour in the neighbour list  

279              if userVectorMatrix.loc[j, i] > 0:  

280                  prediction += (userVectorMatrix.loc[j, i]  

281                                 - 

np.nanmean(userVectorMatrix.loc[j])) * nearestNeighbours.loc[j, 

'Similarity']  

282          predictRating.loc[i, 'Rating'] = prediction  

283      return predictRating  

284    

285    

286    

287  def finalNRecommendations(user, N, movieNum, genreNum):  

288    

289      predictRating = nearestNeighbourPredictions(user, neighbours)  

290      #print 'KNN predictions ', predictRating  

291      moviesRated = list(userVectorMatrix.loc[user]  

292                         .loc[userVectorMatrix.loc[user] > 

0].index)  

293      noGenreList = []  

294      for i in range(0, movieNum):  

295          cnt = 0  

296          for j in range(0, genreNum):  

297              if myItemDatabase.loc[i][j + 2] == 1:  

298                  cnt = cnt + 1  

299          if cnt == 0:  

300              noGenreList.append(predictRating.index.get_loc(i+1))  

301    

302      noGenreList = set(noGenreList) - set(moviesRated) #remove the 

movies that exist inside the moviesRated list  

303      predictRating = predictRating.drop(noGenreList)  

304      predictRating = predictRating.drop(moviesRated)  

305      finalRecommendations = 

pd.DataFrame.sort_values(predictRating, ['Rating'], ascending=[0])[:N]  

306      titles = 

(myItemDatabase.loc[myItemDatabase.itemId.isin(finalRecommendations.in

dex)])  

307      return list(titles.title)  

308    

309    

310  def RatingsNormalized(user):  

311    

312      predictRating = nearestNeighbourPredictions(user, neighbours)  

313      #print ("5050 preds "), predictRating  

314      maximum = predictRating.iloc[:, 0].dropna().max()  
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315      minimum = predictRating.iloc[:, 0].dropna().min()  

316    

317      b = 0  

318      if minimum < 0:  

319          b = -minimum + 0  

320          maximum = maximum - minimum  

321          minimum = minimum - minimum  

322    

323      for i in predictRating.index:  

324          predictRating.loc[i] = predictRating.loc[i] + b  

325          predictRating.loc[i] = predictRating.loc[i] * (5 / 

maximum)  

326          predictRating.loc[i] = 5 - predictRating.loc[i]  

327      return predictRating  

328    

329  def knnPersonality5050(genreSum, myItemDatabase, movieNum, 

genreNum, normalizedTable):  

330      normalizedTable2 = normalizedTable.copy(deep=1)  

331      for i in range(0, movieNum):  

332          cnt = 0  

333          sum = 0  

334          for j in range(0, genreNum):  

335              sum = sum + myItemDatabase.loc[i][j + 2] * 

genreSum.loc[j, 0]  

336              if myItemDatabase.loc[i][j + 2] == 1:  

337                  cnt = cnt + 1  

338          if cnt != 0:  

339              sum = sum / cnt  

340              normalizedTable2.loc[i + 1] = (normalizedTable.loc[i 

+ 1] + sum) / 2  

341          else:  

342              normalizedTable2.loc[i + 1] = 5  

343    

344      return normalizedTable2  

345    

346  def knnPersonality8020(genreSum, myItemDatabase, movieNum, 

genreNum, normalizedTable):  

347      normalizedTable3 = normalizedTable.copy(deep=1)  

348      for i in range(0, movieNum):  

349          cnt = 0  

350          sum = 0  

351          for j in range(0, genreNum):  

352              sum = sum + myItemDatabase.loc[i][j + 2] * 

genreSum.loc[j, 0]  

353              if myItemDatabase.loc[i][j + 2] == 1:  

354                  cnt = cnt + 1  

355          if cnt != 0:  

356              sum = sum / cnt  

357              normalizedTable3.loc[i + 1] = (normalizedTable.loc[i 

+ 1] * 0.2) + (sum * 0.8)  

358          else:  

359              normalizedTable3.loc[i + 1] = 5  

360    

361      return normalizedTable3  

362    

363    

364  def finalNRecommendationsPersonality(tab, user, N):  

365      moviesRated = list(userVectorMatrix.loc[user]  

366                         .loc[userVectorMatrix.loc[user] > 

0].index)  

367    
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368    

369      tabRated = tab.drop(moviesRated)  

370    

371      finalRecommendations = pd.DataFrame.sort_values(tabRated,  

372                                                      ['Rating'], 

ascending=[1])[:N]  

373    

374      titles = 

(myItemDatabase.loc[myItemDatabase.itemId.isin(finalRecommendations.in

dex)])  

375      return list(titles.title)  

376    

377    

378    

379  

######################################################################

###  

380  # Basic tests #  If one of the following tests fails, then exit 

the programm immediatelly  #  

381  

######################################################################

####  

382    

383  exit_if_data_are_not_found()  

384    

385    

386    

387  ############  

388  ### Main ###  

389  ############  

390    

391  myUserDatabase = pd.read_csv(movieLensFile, sep="\t", 

header=None, names=['userId', 'itemId', 'rating'], usecols=[0, 1, 2])  

392  myUserDatabase = newUser(myUserDatabase)  

393  myItemDatabase=pd.read_csv(movieLensItemFile,sep="|", 

header=None, names=['itemId','title', 'Action',' Adventure', 

'Animation', 'Cartoon', 'Comedy','Drama', 'Film-Noir', 'Horror',  

'Romance', 'Sci-Fi', 'War' ], 

usecols=[0,1,6,7,8,9,10,13,15,16,19,20,22])  

394  

myUserDatabase=pd.merge(myUserDatabase,myItemDatabase,left_on='itemId'

,right_on="itemId")  

395  userVectorMatrix=pd.pivot_table(myUserDatabase, values='rating', 

index=['userId'], columns=['itemId'])  

396  userID = 944;  

397  neighbours=50  

398    

399  a = 0  

400  c = 0  

401  o = 0  

402  e = 0  

403  n = 0  

404  while(True):  

405      print '\nWELCOME TO THE BIG FIVE PERSONALITY TEST\n\n'  

406      s='This is a personality test to help us understand  how your 

personality is structured and find the best movie recommendations for 

you.'  

407      l='Please answer all the following questions with a number in 

the range of 1-5, where 1=disagree, 2=slightly disagree, 3=neutral, 

4=slightly agree and 5=agree.'  

408      print s  
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409      print l  

410    

411      print '\n\nAnswer the following questions, with the prefix "I 

think that.."\n\n\n'  

412      q = 'I am the life of the party.'  

413    

414      while (True):  

415          try:  

416              num = int(raw_input(q + '\n'))  

417          except ValueError:  

418              print 'Wrong input, please try again'  

419              continue  

420          if (num<1 or num>5):  

421              print 'Value must be in the range 1-5: Try again.'  

422              continue  

423          break  

424      e = e+num  

425    

426    

427      q = 'I feel little concern for others.'  

428      while (True):  

429          try:  

430              num = int(raw_input(q + '\n'))  

431          except ValueError:  

432              print 'Wrong input, please try again'  

433              continue  

434          if (num<1 or num>5):  

435              print 'Value must be in the range 1-5: Try again.'  

436              continue  

437          break  

438      a = a-num  

439    

440      q = 'I am always prepared.'  

441      while (True):  

442          try:  

443              num = int(raw_input(q + '\n'))  

444          except ValueError:  

445              print 'Wrong input, please try again'  

446              continue  

447          if (num<1 or num>5):  

448              print 'Value must be in the range 1-5: Try again.'  

449              continue  

450          break  

451      c = c+num  

452    

453      q = 'I get stressed out easily.'  

454      while (True):  

455          try:  

456              num = int(raw_input(q + '\n'))  

457          except ValueError:  

458              print 'Wrong input, please try again'  

459              continue  

460          if (num<1 or num>5):  

461              print 'Value must be in the range 1-5: Try again.'  

462              continue  

463          break  

464      n = n-num  

465    

466      q = 'I have a rich vocabulary.'  

467      while (True):  

468          try:  
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469              num = int(raw_input(q + '\n'))  

470          except ValueError:  

471              print 'Wrong input, please try again'  

472              continue  

473          if (num<1 or num>5):  

474              print 'Value must be in the range 1-5: Try again.'  

475              continue  

476          break  

477      o = o+num  

478    

479      q = 'I do not talk a lot.'  

480      while (True):  

481          try:  

482              num = int(raw_input(q + '\n'))  

483          except ValueError:  

484              print 'Wrong input, please try again'  

485              continue  

486          if (num<1 or num>5):  

487              print 'Value must be in the range 1-5: Try again.'  

488              continue  

489          break  

490      e = e-num  

491    

492      q = 'I am interested in people.'  

493      while (True):  

494          try:  

495              num = int(raw_input(q + '\n'))  

496          except ValueError:  

497              print 'Wrong input, please try again'  

498              continue  

499          if (num<1 or num>5):  

500              print 'Value must be in the range 1-5: Try again.'  

501              continue  

502          break  

503      a = a+num  

504    

505      q = 'I leave my belongings around.'  

506      while (True):  

507          try:  

508              num = int(raw_input(q + '\n'))  

509          except ValueError:  

510              print 'Wrong input, please try again'  

511              continue  

512          if (num<1 or num>5):  

513              print 'Value must be in the range 1-5: Try again.'  

514              continue  

515          break  

516      c = c-num  

517    

518      q = 'I am relaxed most of the time.'  

519      while (True):  

520          try:  

521              num = int(raw_input(q + '\n'))  

522          except ValueError:  

523              print 'Wrong input, please try again'  

524              continue  

525          if (num<1 or num>5):  

526              print 'Value must be in the range 1-5: Try again.'  

527              continue  

528          break  

529      n = n+num  
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530    

531      q = 'I have difficulty understanding abstract ideas.'  

532      while (True):  

533          try:  

534              num = int(raw_input(q + '\n'))  

535          except ValueError:  

536              print 'Wrong input, please try again'  

537              continue  

538          if (num<1 or num>5):  

539              print 'Value must be in the range 1-5: Try again.'  

540              continue  

541          break  

542      o = o-num  

543    

544      q = 'I feel comfortable around people.'  

545      while (True):  

546          try:  

547              num = int(raw_input(q + '\n'))  

548          except ValueError:  

549              print 'Wrong input, please try again'  

550              continue  

551          if (num<1 or num>5):  

552              print 'Value must be in the range 1-5: Try again.'  

553              continue  

554          break  

555      e = e+num  

556    

557      q = 'I insult people.'  

558      while (True):  

559          try:  

560              num = int(raw_input(q + '\n'))  

561          except ValueError:  

562              print 'Wrong input, please try again'  

563              continue  

564          if (num<1 or num>5):  

565              print 'Value must be in the range 1-5: Try again.'  

566              continue  

567          break  

568      a = a-num  

569    

570      q = 'I pay attention to details.'  

571      while (True):  

572          try:  

573              num = int(raw_input(q + '\n'))  

574          except ValueError:  

575              print 'Wrong input, please try again'  

576              continue  

577          if (num<1 or num>5):  

578              print 'Value must be in the range 1-5: Try again.'  

579              continue  

580          break  

581      c = c+num  

582    

583    

584      q = 'I worry about things.'  

585      while (True):  

586          try:  

587              num = int(raw_input(q + '\n'))  

588          except ValueError:  

589              print 'Wrong input, please try again'  

590              continue  
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591          if (num<1 or num>5):  

592              print 'Value must be in the range 1-5: Try again.'  

593              continue  

594          break  

595      n = n-num  

596    

597      q = 'I have a vivid imagination.'  

598      while (True):  

599          try:  

600              num = int(raw_input(q + '\n'))  

601          except ValueError:  

602              print 'Wrong input, please try again'  

603              continue  

604          if (num<1 or num>5):  

605              print 'Value must be in the range 1-5: Try again.'  

606              continue  

607          break  

608      o = o+num  

609    

610      q = 'I keep in the background.'  

611      while (True):  

612          try:  

613              num = int(raw_input(q + '\n'))  

614          except ValueError:  

615              print 'Wrong input, please try again'  

616              continue  

617          if (num<1 or num>5):  

618              print 'Value must be in the range 1-5: Try again.'  

619              continue  

620          break  

621      e = e-num  

622    

623    

624      q = 'I sympathize with others feelings.'  

625      while (True):  

626          try:  

627              num = int(raw_input(q + '\n'))  

628          except ValueError:  

629              print 'Wrong input, please try again'  

630              continue  

631          if (num<1 or num>5):  

632              print 'Value must be in the range 1-5: Try again.'  

633              continue  

634          break  

635      a = a+num  

636    

637    

638      q = 'I make a mess of things.'  

639      while (True):  

640          try:  

641              num = int(raw_input(q + '\n'))  

642          except ValueError:  

643              print 'Wrong input, please try again'  

644              continue  

645          if (num<1 or num>5):  

646              print 'Value must be in the range 1-5: Try again.'  

647              continue  

648          break  

649      c = c-num  

650    

651      q = 'I seldom feel blue.'  
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652      while (True):  

653          try:  

654              num = int(raw_input(q + '\n'))  

655          except ValueError:  

656              print 'Wrong input, please try again'  

657              continue  

658          if (num<1 or num>5):  

659              print 'Value must be in the range 1-5: Try again.'  

660              continue  

661          break  

662      n = n+num  

663    

664      q = 'I am not interested in abstract ideas.'  

665      while (True):  

666          try:  

667              num = int(raw_input(q + '\n'))  

668          except ValueError:  

669              print 'Wrong input, please try again'  

670              continue  

671          if (num<1 or num>5):  

672              print 'Value must be in the range 1-5: Try again.'  

673              continue  

674          break  

675      o = o-num  

676    

677    

678      q = 'I start conversations.'  

679      while (True):  

680          try:  

681              num = int(raw_input(q + '\n'))  

682          except ValueError:  

683              print 'Wrong input, please try again'  

684              continue  

685          if (num<1 or num>5):  

686              print 'Value must be in the range 1-5: Try again.'  

687              continue  

688          break  

689      e = e+num  

690    

691      q = 'I am not interested in other peoples problems.'  

692      while (True):  

693          try:  

694              num = int(raw_input(q + '\n'))  

695          except ValueError:  

696              print 'Wrong input, please try again'  

697              continue  

698          if (num<1 or num>5):  

699              print 'Value must be in the range 1-5: Try again.'  

700              continue  

701          break  

702      a = a-num  

703    

704    

705      q = 'I get chores done right away.'  

706      while (True):  

707          try:  

708              num = int(raw_input(q + '\n'))  

709          except ValueError:  

710              print 'Wrong input, please try again'  

711              continue  

712          if (num<1 or num>5):  
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713              print 'Value must be in the range 1-5: Try again.'  

714              continue  

715          break  

716      c = c+num  

717    

718      q = 'I am easily disturbed.'  

719      while (True):  

720          try:  

721              num = int(raw_input(q + '\n'))  

722          except ValueError:  

723              print 'Wrong input, please try again'  

724              continue  

725          if (num<1 or num>5):  

726              print 'Value must be in the range 1-5: Try again.'  

727              continue  

728          break  

729      n = n-num  

730    

731    

732      q = 'I have excellent ideas.'  

733      while (True):  

734          try:  

735              num = int(raw_input(q + '\n'))  

736          except ValueError:  

737              print 'Wrong input, please try again'  

738              continue  

739          if (num<1 or num>5):  

740              print 'Value must be in the range 1-5: Try again.'  

741              continue  

742          break  

743      o = o+num  

744    

745      q = 'I have little to say.'  

746      while (True):  

747          try:  

748              num = int(raw_input(q + '\n'))  

749          except ValueError:  

750              print 'Wrong input, please try again'  

751              continue  

752          if (num<1 or num>5):  

753              print 'Value must be in the range 1-5: Try again.'  

754              continue  

755          break  

756      e = e-num  

757    

758      q = 'I have a soft heart.'  

759      while (True):  

760          try:  

761              num = int(raw_input(q + '\n'))  

762          except ValueError:  

763              print 'Wrong input, please try again'  

764              continue  

765          if (num<1 or num>5):  

766              print 'Value must be in the range 1-5: Try again.'  

767              continue  

768          break  

769      a = a+num  

770    

771    

772      q = 'I often forget to put things back in their proper 

place.'  
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773      while (True):  

774          try:  

775              num = int(raw_input(q + '\n'))  

776          except ValueError:  

777              print 'Wrong input, please try again'  

778              continue  

779          if (num<1 or num>5):  

780              print 'Value must be in the range 1-5: Try again.'  

781              continue  

782          break  

783      c = c-num  

784    

785      q = 'I get upset easily.'  

786      while (True):  

787          try:  

788              num = int(raw_input(q + '\n'))  

789          except ValueError:  

790              print 'Wrong input, please try again'  

791              continue  

792          if (num<1 or num>5):  

793              print 'Value must be in the range 1-5: Try again.'  

794              continue  

795          break  

796      n = n-num  

797    

798    

799      q = 'I do not have a good imagination.'  

800      while (True):  

801          try:  

802              num = int(raw_input(q + '\n'))  

803          except ValueError:  

804              print 'Wrong input, please try again'  

805              continue  

806          if (num<1 or num>5):  

807              print 'Value must be in the range 1-5: Try again.'  

808              continue  

809          break  

810      o = o-num  

811    

812      q = 'I talk to a lot of different people at parties.'  

813      while (True):  

814          try:  

815              num = int(raw_input(q + '\n'))  

816          except ValueError:  

817              print 'Wrong input, please try again'  

818              continue  

819          if (num<1 or num>5):  

820              print 'Value must be in the range 1-5: Try again.'  

821              continue  

822          break  

823      e = e+num  

824    

825      q = 'I am not really interested in others.'  

826      while (True):  

827          try:  

828              num = int(raw_input(q + '\n'))  

829          except ValueError:  

830              print 'Wrong input, please try again'  

831              continue  

832          if (num<1 or num>5):  

833              print 'Value must be in the range 1-5: Try again.'  
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834              continue  

835          break  

836      a = a-num  

837    

838    

839      q = 'I like order.'  

840      while (True):  

841          try:  

842              num = int(raw_input(q + '\n'))  

843          except ValueError:  

844              print 'Wrong input, please try again'  

845              continue  

846          if (num<1 or num>5):  

847              print 'Value must be in the range 1-5: Try again.'  

848              continue  

849          break  

850      c = c+num  

851    

852    

853      q = 'I change my mood a lot.'  

854      while (True):  

855          try:  

856              num = int(raw_input(q + '\n'))  

857          except ValueError:  

858              print 'Wrong input, please try again'  

859              continue  

860          if (num<1 or num>5):  

861              print 'Value must be in the range 1-5: Try again.'  

862              continue  

863          break  

864      n = n-num  

865    

866    

867      q = 'I am quick to understand things.'  

868      while (True):  

869          try:  

870              num = int(raw_input(q + '\n'))  

871          except ValueError:  

872              print 'Wrong input, please try again'  

873              continue  

874          if (num<1 or num>5):  

875              print 'Value must be in the range 1-5: Try again.'  

876              continue  

877          break  

878      o = o+num  

879    

880      q = 'I do not like to draw attention to myself.'  

881      while (True):  

882          try:  

883              num = int(raw_input(q + '\n'))  

884          except ValueError:  

885              print 'Wrong input, please try again'  

886              continue  

887          if (num<1 or num>5):  

888              print 'Value must be in the range 1-5: Try again.'  

889              continue  

890          break  

891      e = e-num  

892    

893      q = 'I take time out for others.'  

894      while (True):  
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895          try:  

896              num = int(raw_input(q + '\n'))  

897          except ValueError:  

898              print 'Wrong input, please try again'  

899              continue  

900          if (num<1 or num>5):  

901              print 'Value must be in the range 1-5: Try again.'  

902              continue  

903          break  

904      a = a+num  

905    

906    

907      q = 'I shirk my duties.'  

908      while (True):  

909          try:  

910              num = int(raw_input(q + '\n'))  

911          except ValueError:  

912              print 'Wrong input, please try again'  

913              continue  

914          if (num<1 or num>5):  

915              print 'Value must be in the range 1-5: Try again.'  

916              continue  

917          break  

918      c = c-num  

919    

920    

921      q = 'I have frequent mood swings.'  

922      while (True):  

923          try:  

924              num = int(raw_input(q + '\n'))  

925          except ValueError:  

926              print 'Wrong input, please try again'  

927              continue  

928          if (num<1 or num>5):  

929              print 'Value must be in the range 1-5: Try again.'  

930              continue  

931          break  

932      n = n-num  

933    

934    

935      q = 'I use difficult words.'  

936      while (True):  

937          try:  

938              num = int(raw_input(q + '\n'))  

939          except ValueError:  

940              print 'Wrong input, please try again'  

941              continue  

942          if (num<1 or num>5):  

943              print 'Value must be in the range 1-5: Try again.'  

944              continue  

945          break  

946      o = o+num  

947    

948      q = 'I do not mind being the center of attention.'  

949      while (True):  

950          try:  

951              num = int(raw_input(q + '\n'))  

952          except ValueError:  

953              print 'Wrong input, please try again'  

954              continue  

955          if (num<1 or num>5):  
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956              print 'Value must be in the range 1-5: Try again.'  

957              continue  

958          break  

959      e = e+num  

960    

961    

962      q = 'I feel others emotions.'  

963      while (True):  

964          try:  

965              num = int(raw_input(q + '\n'))  

966          except ValueError:  

967              print 'Wrong input, please try again'  

968              continue  

969          if (num<1 or num>5):  

970              print 'Value must be in the range 1-5: Try again.'  

971              continue  

972          break  

973      a = a+num  

974    

975    

976      q = 'I follow a schedule.'  

977      while (True):  

978          try:  

979              num = int(raw_input(q + '\n'))  

980          except ValueError:  

981              print 'Wrong input, please try again'  

982              continue  

983          if (num<1 or num>5):  

984              print 'Value must be in the range 1-5: Try again.'  

985              continue  

986          break  

987      c = c+num  

988    

989    

990      q = 'I get irritated easily.'  

991      while (True):  

992          try:  

993              num = int(raw_input(q + '\n'))  

994          except ValueError:  

995              print 'Wrong input, please try again'  

996              continue  

997          if (num<1 or num>5):  

998              print 'Value must be in the range 1-5: Try again.'  

999              continue  

1000         break  

1001     n = n-num  

1002   

1003   

1004     q = 'I spend time reflecting on things.'  

1005     while (True):  

1006         try:  

1007             num = int(raw_input(q + '\n'))  

1008         except ValueError:  

1009             print 'Wrong input, please try again'  

1010             continue  

1011         if (num<1 or num>5):  

1012             print 'Value must be in the range 1-5: Try again.'  

1013             continue  

1014         break  

1015     o = o+num  

1016   
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1017     q = 'I am quiet around strangers.'  

1018     while (True):  

1019         try:  

1020             num = int(raw_input(q + '\n'))  

1021         except ValueError:  

1022             print 'Wrong input, please try again'  

1023             continue  

1024         if (num<1 or num>5):  

1025             print 'Value must be in the range 1-5: Try again.'  

1026             continue  

1027         break  

1028     e = e-num  

1029   

1030     q = 'I make people feel at ease.'  

1031     while (True):  

1032         try:  

1033             num = int(raw_input(q + '\n'))  

1034         except ValueError:  

1035             print 'Wrong input, please try again'  

1036             continue  

1037         if (num<1 or num>5):  

1038             print 'Value must be in the range 1-5: Try again.'  

1039             continue  

1040         break  

1041     a = a+num  

1042   

1043   

1044     q = 'I am exacting in my work.'  

1045     while (True):  

1046         try:  

1047             num = int(raw_input(q + '\n'))  

1048         except ValueError:  

1049             print 'Wrong input, please try again'  

1050             continue  

1051         if (num<1 or num>5):  

1052             print 'Value must be in the range 1-5: Try again.'  

1053             continue  

1054         break  

1055     c = c+num  

1056   

1057     q = 'I often feel blue.'  

1058     while (True):  

1059         try:  

1060             num = int(raw_input(q + '\n'))  

1061         except ValueError:  

1062             print 'Wrong input, please try again'  

1063             continue  

1064         if (num<1 or num>5):  

1065             print 'Value must be in the range 1-5: Try again.'  

1066             continue  

1067         break  

1068     n = n-num  

1069   

1070   

1071     q = 'I am full of ideas.'  

1072     while (True):  

1073         try:  

1074             num = int(raw_input(q + '\n'))  

1075         except ValueError:  

1076             print 'Wrong input, please try again'  

1077             continue  
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1078         if (num<1 or num>5):  

1079             print 'Value must be in the range 1-5: Try again.'  

1080             continue  

1081         break  

1082     o = o+num  

1083   

1084   

1085   

1086     agreeableness_final = (24 + a)/10.0  

1087     openness_final = (18 + o)/10.0  

1088     conscientiousness_final =(24 + c)/10.0  

1089     extraversion_final = (30 + e)/10.0  

1090     neuroticism_final = (48 + n)/10.0  

1091     print '\n\n'  

1092   

1093     print "Extraversion=", extraversion_final  

1094   

1095     print "Agreeableness=", agreeableness_final  

1096   

1097     print "conscientiousness=", conscientiousness_final  

1098   

1099     print "neuroticism=", neuroticism_final  

1100   

1101     print "openness=", openness_final  

1102     print '\n'  

1103   

1104   

1105     print ("THANK YOU FOR FILLING THE BIG FIVE QUESTIONAIRE. ")  

1106     break  

1107 #execfile('Analyzer.py')  

1108 print 'Please Wait . . .'  

1109   

1110   

1111   

1112   

1113   

1114   

1115   

1116 

myFiveFactorDatabase=pd.read_csv(FiveFactorFile,sep=",",header=None,  

1117                  names=['MOVIE 

GENRE','OPE','CON','EXT','AGR','NEU'], usecols=[0,1,2,3,4,5])  

1118   

1119   

1120 myFiveFactorDatabase.loc[:, 'OPE']-=openness_final  

1121 myFiveFactorDatabase.loc[:, 'OPE'] = myFiveFactorDatabase.loc[:, 

'OPE'].abs()  

1122 myFiveFactorDatabase.loc[:, 'CON']-=conscientiousness_final  

1123 myFiveFactorDatabase.loc[:, 'CON'] = myFiveFactorDatabase.loc[:, 

'CON'].abs()  

1124 myFiveFactorDatabase.loc[:, 'EXT']-=extraversion_final  

1125 myFiveFactorDatabase.loc[:, 'EXT'] = myFiveFactorDatabase.loc[:, 

'EXT'].abs()  

1126 myFiveFactorDatabase.loc[:, 'AGR']-=agreeableness_final  

1127 myFiveFactorDatabase.loc[:, 'AGR'] = myFiveFactorDatabase.loc[:, 

'AGR'].abs()  

1128 myFiveFactorDatabase.loc[:, 'NEU']-=neuroticism_final  

1129 myFiveFactorDatabase.loc[:, 'NEU'] = myFiveFactorDatabase.loc[:, 

'NEU'].abs()  

1130   

1131 numbah = myFiveFactorDatabase.sum(axis=1, numeric_only=True)  
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1132 numbahNames = myFiveFactorDatabase.loc[:, 'MOVIE GENRE']  

1133   

1134 genreSum=pd.concat([numbahNames, numbah], axis=1)  

1135   

1136 normalizedTable=RatingsNormalized(userID)  

1137   

1138   

1139   

1140   

1141   

1142   

1143 tab = knnPersonality5050(genreSum, myItemDatabase, 1682, 11, 

normalizedTable)  

1144   

1145   

1146   

1147   

1148 tab2 = knnPersonality8020(genreSum, myItemDatabase, 1682, 11, 

normalizedTable)  

1149   

1150   

1151   

1152   

1153   

1154 print nearestNeighbourPredictions(userID, neighbours)  

1155   

1156   

1157   

1158 #print 'Your highest rated movies are: \n', myBestMovies(userID, 

10)  

1159 l5050 = finalNRecommendationsPersonality(tab, userID, 10)  

1160 print '50/50 recomendations:'  

1161 for i in l5050:  

1162     print(i)  

1163 print '\n\n'  

1164 lknn = finalNRecommendations(userID, 10, 1682, 11) #knn  

1165 print 'KNN recomendations:'  

1166 for i in lknn:  

1167     print(i)  

1168 print '\n\n'  

1169 l8020 = finalNRecommendationsPersonality(tab2, userID, 10) #80/20  

1170 print '80/20 recomendations:'  

1171 for i in l8020:  

1172     print(i)  

1173 print '\n\nPress Enter to Exit . . .'  

1174 useless = (raw_input())  

1175  

 


