
 -i-

THE 50/50
RECOMMENDER:
PERSONALITY IN MOVIE
RECOMMENDER
SYSTEMS

Nalmpantis Orestis

SCHOOL OF SCIENCE & TECHNOLOGY

A thesis submitted for the degree of

Master of Science (MSc) in Information and Communication Systems

JANUARY 2017

THESSALONIKI – GREECE

 -ii-

THE50/50
RECOMMENDER:
PERSONALITY IN MOVIE
RECOMMENDER
SYSTEMS

Nalmpantis Orestis

Supervisor: Prof. C.Tjortjis

Supervising Committee

Members:

Assoc. Prof. N. Basilliades

Assist. Prof. C.Berberidis

SCHOOL OF SCIENCE & TECHNOLOGY

A thesis submitted for the degree of

Master of Science (MSc) in Information and Communication Systems

 -iii-

Abstract

This dissertation was written as a part of the MSc in ICT Systems at the International

Hellenic University. Its main goal is the examination of the role of human personality in

Movie Recommender systems. We introduce the concept of combining collaborative

techniques with a personality test so to provide more personalized movie

recommendations.

Previous research has shown some efforts to incorporate personality in Recommender

systems, but no actual implementation has been attempted on a software level. Using a

renowned movie dataset and the Big Five Personality test, we developed a system with

Python that managed to improve the normal Movie Recommendation experience by

3.62%.

The findings show that Personalization improves the user’s experience even though

extra effort might be demanded. With further modifications and testing, we can come to

the new age of recommender systems, where personality of the user is as important as it

is in real life.

I would like to thank my supervisor Dr. Christos Tjortjis for his guidance and his

excellent ideas and additions to this Dissertation.

Student Name: Nalmpantis Orestis

Date:13/01/2017

 -1-

Contents

THE 50/50 RECOMMENDER: PERSONALITY IN MOVIE RECOMMENDER

SYSTEMS ... I

THE50/50 RECOMMENDER: PERSONALITY IN MOVIE RECOMMENDER

SYSTEMS ... II

ABSTRACT ... III

CONTENTS .. 1

1 INTRODUCTION .. 4

1.1 HISTORY OF RECOMMENDER SYSTEMS ... 4

1.2 WHAT IS EXACTLY A RECOMMENDER SYSTEM? .. 5

1.3 RECOMMENDER SYSTEMS TODAY .. 6

1.4 MOTIVATION ... 7

1.5 THE PROBLEM .. 7

1.6 HYPOTHESIS .. 8

1.7 THE AIM.. 8

1.8 DISSERTATION OUTLINE .. 9

2 LITERATURE REVIEW .. 10

2.1 THE COLD-START PROBLEM ... 10

2.2 LITERATURE ON THE COLD-START PROBLEM .. 12

2.2.1 Using social networks to improve movie rating predictions 12

2.2.2 Recommendation of TV shows and movies based on Facebook

data 13

2.2.3 Cold-start Problem in collaborative recommender systems:

Efficient methods based on Ask-to-rate technique 16

2.2.4 Getting to Know You: Learning New User Preferences in

Recommender Systems ... 21

2.2.5 Learning preferences of new users in recommender Systems:

An information theoretic approach ... 23

 -2-

2.2.6 A hybrid recommender system based on user-recommender

interaction ... 25

2.3 PERSONALIZATION IN RECOMMENDER SYSTEMS ... 27

2.4 LITERATURE ON PERSONALIZATION .. 28

2.4.1 Multi criteria pseudo rating and multidimensional user profile for

movie recommender system ... 28

2.4.2 Making recommendations better: An analytic model for Human-

Recommender interaction .. 30

2.4.3 Personality, movie preferences, and recommendations 33

2.4.4 Movie recommender system using the user's psychological

profile 35

2.4.5 Relating Personality types with user preferences in multiple

entertainment domains ... 39

3 COLLABORATIVE FILTERING RECOMMENDER SYSTEMS 44

3.1 CONCEPTS AND VOCABULARY .. 44

3.2 HOW IT WORKS .. 46

3.3 BASIC STEPS .. 47

3.4 TASTE ASSUMPTIONS .. 47

3.5 K-NEAREST NEIGHBORS ALGORITHM .. 48

3.5.1 Advantages of Knn over other algorithms 48

3.5.2 Weaknesses of Knn over other algorithms 49

3.5.3 Explanation of Knn operation .. 50

3.6 CALCULATING SIMILARITY SCORES ... 54

3.6.1 Why we choose Pearson correlation? ... 54

3.6.2 How Pearson correlation Works ... 55

3.7 PREDICT RATING FORMULA ... 59

3.8 HOW A TYPICAL MOVIE RECOMMENDER SYSTEM WORKS 61

3.9 UNDERSTANDING THE COMPUTATIONS .. 65

4 HUMAN FACTOR AND THE BIG FIVE PERSONALITY TEST 68

4.1 HUMAN FACTOR ... 68

4.2 BACKGROUND ON THE BIG FIVE PERSONALITY TEST 71

4.3 WHAT ARE THE BIG FIVE TRAITS? .. 71

 -3-

4.4 SOME ISSUES WITH THE BIG FIVE PERSONALITY TEST 72

4.5 FURTHER ANALYSIS OF EACH TRAIT .. 72

4.6 BIG-FIVE TRAITS MARKERS ... 74

4.7 BIG FIVE TRAITS AND HUMAN CHARACTERISTICS .. 77

4.8 BIG FIVE PERSONALITY TEST QUESTIONS .. 78

4.9 SCORING IN BIG FIVE TEST ... 81

5 DESIGN OF THE 50/50 MOVIE RECOMMENDER ... 84

5.1 OVERVIEW .. 84

5.2 MOVIELENS DATASET .. 84

5.3 EXTRA INFORMATION ADDED... 86

5.4 ASSUMPTIONS .. 88

5.5 SYSTEM ARCHITECTURE .. 88

5.6 MAIN FLOW CHART EXPLANATION .. 89

5.7 MOVIE RATING FUNCTION FLOW CHART EXPLANATION 91

5.8 BIG FIVE PERSONALITY TEST FUNCTION FLOW CHART 95

5.9 COMBINING PERSONALITY WITH KNN FLOW CHART 96

6 IMPLEMENTATION IN PYTHON.. 106

6.1 FUNCTIONS .. 106

6.2 PROGRAM FLOW, DETAILS AND EXPLANATION .. 108

7 EVALUATION AND FUTURE WORK .. 120

7.1 EVALUATION ... 120

7.2 CONCLUSIONS .. 123

7.3 IMPROVEMENTS AND FUTURE WORK .. 123

BIBLIOGRAPHY AND REFERENCES .. 126

BIBLIOGRAPHY .. 126

PICTURES .. 129

EQUATIONS ... 130

TABLES .. 131

SCRIPT .. 132

 -4-

1 Introduction

The last few years, the massive growth and impact of the World Wide Web had as an

immediate result the handling and distribution of huge amounts of data and information.

It also made it easier for the average user to access this information and use it for his

own needs.

Although this may seem as a huge improvement for computer technology, it certainly

came with some drawbacks. Now, all these data had to be stored somewhere to be

maintained. This, in conjunction with the fact that the data kept growing and getting

bigger, made it really difficult for the average user to sort and process the databases and

extract useful information. In order for the user to be able to use the data and fulfill his

needs, a lot of time and effort is demanded.

This is where a recommender system comes in place. In a few words, a recommender

system is an assistive device that directs and guides the user in his search for useful

information. This system is the mean for the user to avoid all this effort of endless hours

of searching and organizing the data and information.

1.1 History Of Recommender Systems
The very first recommender system came in the late 70’s which is fairly early in the

history of computers. The name of the recommender was Grundy and it was a system

used for a library with the main goal of suggesting novels to people who are first

organized into different stereotypes. It was pretty impressive at the time it was designed

as it incorporated the personalities and goals of all the distinct users before making the

recommendations.

Later, in the early 90’s we saw the rise of collaborative filtering which came as a

solution to the huge overload in data. One of the first systems that used collaborative

filtering was Tapestry which allowed users to search for items in an information

domain, based on opinions of other users.

 -5-

Then, Grouplens, came and introduced automated collaborative filtering

recommendation systems. Grouplens main goal was to suggest interesting Usenet

articles by finding similar opinions between different users. The idea is that the active

user can express whether he likes a Usenet article or not and then the system predicts

and recommends him articles that he will probably like based on people who share the

same taste as him. This is what we call the nearest neighbor method and it’s the one that

we used in this dissertation.

Collaborative filtering became widely known and this increased the interest in machine

learning and data mining generally. Various recommender systems were introduced

such as Bellcore Movie Recommender and Ringo Music Recommender. Furthermore,

during this time, recommender systems were also applied for marketing situations and

became really useful for increasing sales and generally reducing the customer effort and

improving his experience.

Then the most renowned recommender system came, Amazon. This system is still

famous today and uses a combination of collaborative and content based filtering

method with the addition of what the user is currently browsing to make the

recommendations.

A big step to the study of recommender systems came in 2006, when Netflix launched

their Netflix prize competition to improve their movie recommendation algorithm.

Today, Netflix is considered to have one of the more advanced hybrid recommender

systems.

1.2 What Is Exactly A Recommender System?

An easy definition of a Recommender system is one that implies that it is a system

which has the abilities to collect and present in each user some documents (in a general

sense) which belong in his field of interest. This is exactly what we call a

recommendation, the collection and presentation of useful information to a specific

user.

This definition has been expanded by researchers with a great example mentioned in

[1], where they state that a recommender system is “ any system that produces

individualized recommendations as output or has the effect of guiding the user in a

personalized way to interesting or useful objects in a large space of possible options”

 -6-

Then [2] made it even more formal stating that “ the recommendation problem can be

formulated as follows: Let C be the set of all users and let S be the set of all possible

items that can be recommended. Let u be a utility function that measures the usefulness

of item s to user c, that is , u:C x S →R, where R is a totally ordered set (for example,

nonnegative integers or real numbers within a certain range). Then for each user 𝑐 ∈ 𝐶,

we want to choose such items 𝑠′ ∈ 𝑆 that maximizes the user’s utility”.

We can clearly see from the above definition that the goal of a recommender system is

the choice of items with the best correlation and not just to predict the correlations

between the users and all the different items.

So from all these definitions we can come to the conclusion about two significant facts

regarding the recommender systems. First, personalization is an important part of a

recommender system as its main focus should be the recommendation of specific

products and services to a particular user and not to represent group consensus for all

users. Second, the system must know some important information about the user so to

be able to make recommendations. The user must be present with discrete options,

including items known in advance and not randomly generated.

1.3 Recommender Systems Today

Recommender systems today became a standard for every online store. They play the

part of the sales person, a sales person that knows all the data or number of products the

online service offers and knows truly what you like and what you don’t. This comes

really handy when users have limited time and patience and are not sure what they are

looking for. Users might be surprised by the fact that recommenders may even suggest

things that they didn’t even know they liked.

So, recommendations help online stores and services solve the problem of discovery by

providing top picks for you, suggestions in the style of “If you like this, you will also

like that “ and “if you buy this, you will need that." They do that with the use of huge

databases that includes what the users browsed, what the users bought, what and when

they clicked and what they rated.

 -7-

Personalization in recommender systems tends to be a new trend nowadays. It is mostly

based upon the theory of human-computer interaction which in a few words says that

computers will and should always work with and for humans. Lately, computer

scientists try to incorporate human psychological aspects to enhance the above

interaction by observing how users proceed in recommending a service or an item to

another person in conventional life. This helps model the human psychology and create

accurate and efficient strategies for the recommender so that the recommendations are

more on point and personalized for the user.

1.4 Motivation

The main motivation behind this dissertation is the lack of personalization in current

recommender systems. It is a general concern that was more easily applicable by

developing a movie recommender system, as there are many databases and metadata on

movies. Two papers were really inspirational for this Dissertation, [3] and [4].

1.5 The Problem

Even though personalization in recommender systems is something that has been

studied and researched a lot, the study of personalization based on user’s actual

personality is something new and unique. We believe that a recommender system must

know the basic personality traits of the active user and that this will help in the final

recommendations. Imagine in real life, having one of your close friends suggesting you

a movie to watch. You might like similar things, and you may respect his taste in

movies but if he is a calm and shy person in contrast with you being a really active and

“crazy” person, then maybe you wouldn’t listen to his suggestion and prefer a

recommendation from a person that has a similar personality to you.

 -8-

1.6 Hypothesis

We believe that in the future, every operating system must have a recommender system

with a personality test incorporated, that learns the user’s taste and reactions and helps

both with the operation of the computer and the Internet navigation and the provision of

services. We also believe that the user must trust the recommender and it will be easier

to do so if he believes that the recommender “knows” his personality.

1.7 The Aim
The aim is first to find an accurate and easy test to examine the user’s personality. Next,

we aim to find a connection between the personality and the different genres of movies.

Then we build a normal Knn Movie recommender system and filter its results based

upon the genre preferences the user has (that were exported from the personality test).

We then suggest three different sets of recommended movies, one with only the Knn

suggestions, one with 50% Knn and 50% personality and one with 80% personality and

20% Knn. The aim is to prove that the 50 % knn and 50 % personality is the one that

most people prefer as it combines the best of both worlds, recommendations having the

K nearest neighbors in mind and filtering those recommendations with the user’s

specific personality (genre preferences). This system is the 50/50 movie recommender

system.

 -9-

1.8 Dissertation Outline

This Dissertation is organized as follows:

1. In the first chapter, we provide a literature review of all the different published

papers by accredited scholars and researchers. We select the most significant

and relevant to our subject, mention their strong or weak points, summarize

their main features in our own wording and explain what we improve and

where our work fit it in.

2. In the second chapter, we have the analysis of the most important aspects of

our dissertation. We explain some important core concepts and introduce the

reader to the recommender systems. We provide a brief explanation of the

different types of recommender systems. Furthermore, we provide an

explanation of the Big Five Personality Test and the human factor in general.

3. In the third chapter, we provide specific details of the design of the 50/50

Movie Recommender System. We provide the basic flow charts and briefly

explain how our recommender works.

4. In the fourth chapter, we present the implementation of our system in Python

and the programming techniques used. We provide also a small study of the

dataset and the interesting information we extract from it.

5. In the fifth chapter, we provide the results of our Evaluation and final

conclusions and future work to improve the system.

 -10-

2 LITERATURE REVIEW

2.1 The Cold-Start Problem

Collaborative filtering is one of the best approaches to develop a recommender system

and is the basis of our recommendation engine. As we know, it’s a method that offers

items to a user, based on items previously rated by other similar users. A big problem

though is how to make recommendations for a new user, based upon the fact that he

doesn’t have any items rated and he can’t be clustered with any of the other users. This

problem is called the cold start problem.

There are actually many different cold start problems in recommender systems. The 3

basic types are: dealing with a new user, a new item or even a new recommender system

from scratch. The one that we study is dealing with a new user.

So, the actual problem is that when a new user registers, we simply don’t have a profile,

meaning we don’t know his preferences. That means that the recommender cannot

operate as it doesn’t know what to suggest to this user. Now, if the system is not

personalized, this makes everything easier because now the recommendation engine can

just present items that are based on what is cheapest, most popular, most viewed and

generally, whatever the user prefers currently. For example if you visit a mobile phone

e-shop, you can simply ask to see the top most sold phones currently and the

recommendation engine will provide this for you. No personalization is required for the

new user.

 -11-

Now, to personalize the user, there are many things to consider and many ways it can be

done. First and most simple way is to suggest the most popular items the user is likely

to be interested in. If for example, in a movie recommender system, a user specifies that

action movies are his favorite genre, then we provide him with the most popular action

movies. As the user reacts to these recommendations, the engine gathers the ratings he

provides and helps personalize the user and make unique recommendations later on.

This implies that the system learns with the more ratings the user provides but the

danger of this method is that it turns out to be too biased and domain dependent because

for example , the recommendation engine might suggest only action movies, something

that might be confusing and boring for the user.

Another way is to provide recommendations based on information gathered from other

websites, or even from the recommender, like country of origin, age, sex etc. This will

make the clustering much easier and accurate as for example young people tend to

watch more comedy movies than dramas, so a user that provides all this information is

more likely to receive a better recommendation. But again this kind of information is so

open to interpretation that it still is confusing to make accurate recommendations. In

this dissertation we went a step further and included a personality test so that the

recommendations are even more personalized.

Last but not least, one of the most modern methods to treat the cold start problem is to

integrate information derived from social networks like Facebook, Google Plus etc.

That way you can build a basis for personalization but many people find this method

kind of dangerous because you need to provide personal information for it to work, for

example you have to provide access to your Facebook profile. As we, see later in this

chapter, this method is not that accurate because the recommendations are based on the

friends you have on social media and what they like. This is not an easy task as we all

know that people tend to add many different people on social networks, even people

that they never met or even know. So that for sure can lead to an inaccurate

recommendation.

 -12-

All of these methods have two main goals. First, is to get you to use the recommender.

The other is to push you into some sort of activities like answering questions or picking

favorite items so that you will provide explicit or implicit ratings and accurate feedback.

That information will be later user to personalize even further the recommendations that

the active user gets. The main goal of this dissertation is to be able to provide

recommendations both by rating some of your favorite movies and by using the Big

Five personality test because each personality has a different preference and tends to

like different genres of movies.

So, there are many solutions that have been studied in the past and in this part of the

dissertation we will review some papers that helped solving the cold start problem in

our recommender.

2.2 Literature On The Cold-Start Problem

2.2.1 Using social networks to improve movie rating predictions

In [5], we can see an attempt to start incorporating social media as a way to predict the

rating of a movie. It suggests the use of user similarity and not the usual item-based

approach to predict the item preferences of the user. The dataset used is a collection of

different user ratings and social networks that were provided by Flixster.

In this approach we have a set of users and movies and a set of training examples. Then

a matrix is created to represent the Social Media and the interaction between the users.

If two users are friends on Facebook for example, then the matrix’s appropriate field is

1 and if they are not friends its 0.

The statement this paper makes is that if two users are friends on Social Media, then

they have similar tastes. This is the approach the author uses to treat the Cold Start

Problem. Specifically, the author states “The premise here is that users who are friends

with each other will tend to rate similar movies similarly”. This is an overrated

approach and we can see that also in the conclusion of the paper.

 -13-

The author uses the K-nearest algorithm with the addition of the Social Media

Friendship similarity. On the following formula, s is the Social Media Friendship

similarity, sim(u,v) is the similarity measure between two different users u and v and is

on the range from 0 to 1, w is 1 if u and v are friends and 0 if they are not, and sim(u,v).

This formula is always close to 1 if the 2 users are friend on Social Media.

 (,) 1 (,) xs sim u v sim u v w  

Equation 2.1: Social Media Friendship Similarity

Now, the author treats the Cold Start Problem with the Social Media Similarity in mind

instead of using the average rating for a movie when a new user enters the system. The

paper states that the best method is to “use the user’s friends to gather a set of similar

users from which to take an average rating”.

As a conclusion, this paper doesn’t produce the desirable results. As we know, the

effectiveness of an algorithm is based on the value of the Root Mean of Squared Error

and in this paper the Social Media Friendship Similarity produce a RSME of 1.48 which

is worse than simply using the k-Nearest Neighbor algorithm

In this Dissertation, one of the first ideas of dealing with the Cold Start Problem was to

use Social Media as the previous paper. We believe that asking the user to rate at least

20 of his favourite movies and using a personality test will be more successful.

2.2.2 Recommendation of TV shows and movies based on
Facebook data

In [6], the authors use specifically Facebook data to help solve the Cold Start Problem

in recommending movies and TV shows to new users.

The main point of this paper is that eventhough a recommender might recommend

popular movies or tv shows to a new user, this is not personalized at all because of the

fact that if a movie for example is overhyped it doesn’t mean necesseraly that its

aprropriate for the specific user. The authors try to solve this problem by looking at a

person “likes” on Facebook and assume that there is a correlation between the different

tastes in books, music etc and the users taste in movies or TV shows. They try two

different methods, one using unsupervised learning and one using supervised learning.

In the first method a K-means clustering algorithm is used to cluster the different

Facebook profiles and then recommend specific movies and TV shows to every

 -14-

different cluster. This simulates real life friend relationship circles because people in the

same cluster means that are people which are more similar to each other and probably

sharing similar interests. After clustering, we can see which movies and TV shows are

famous in each cluster and 10 out of those are recommended to the users.

As usual, the number of clusters was a huge factor, especially when you have a huge

dataset so different numbers of clusters varied from 3 to 40 were tested. Big factor was

also the Use of Latent Semantic Analysis to reduce the size of the matrix in half.

The authors define the accuracy for each user as the division of hits with the number of

shows per movies they recommended multiplied by 100.

Accuracy for each user=(hits÷number of shows/movies we recommended)*100

Where : Hits=total number of recommended shows/movies that were listed in their

profile

 Number of shows/movie we recommended=10

 Overall accuracy=accuracy for each test user ÷number of test users

After many experimentations with the number of clusters they chose k=8 as it was the

one with the most accuracy (24%). You can see the results on the following picture:

Picture 2.1: K number

 -15-

A really big factor in the second method is the data processing. For every different user,

the authors collected all their “likes” apart from movies and TV shows and combined

them into a long string. This string is called the document of the user, which is then

tokenized. They then gather all tokens from all the different documents and form a

vocabulary. Next step is the creation of a document-token matrix consisting of the

documents, each of which corresponds to a different user, and the tokens of the

vocabulary. For example, if the (i,j)th element of the matrix is equal to 1 that means that

the jth token of the vocabulary exists also in the ith user’s document. Last, they apply

the Inverse Document Frequency weighting so that the least important tokens are the

ones that appear more often.

Then, they first use a supervised algorithm to recommend the top genres for every user

and then recommend specific movies and TV shows out of those. Each user is labeled

with the genres they prefer. Important is the use of a weight which helps prioritize the

options of the user. According to the paper, if a person liked 2 shows, for example, his

first best option is a drama and comedy show and his second best option is a comedy

show, then for this user drama genre has a weight of 1 and comedy genre a weight of 2.

The bigger the weight, the most likely it is to like a genre. Last, a person (document)-

genre matrix is created so that they can get the probability that a term in a vocabulary of

a user is directly associated with a genre.

The algorithm they pick to use then is the Naïve Bayes algorithm which predicts the

probabilities that each user might like one genre based on the words in their document.

Then, they recommend the top five genres and specifically the two most popular movies

or shows for those specific genres to all the users.

The results of the second method are not so satisfying. They get 70.98 % accuracy on

recommending the top 5 genres but they get a 32.84 % on the two movies/TV shows

from these top 5 genres. A good idea would be to further use machine learning to

specify more personalized movies for each user and not just the 2 most famous movies

on each genre. This will demand the use of content based algorithms for each user and

it’s something that will be used in this dissertation.

 -16-

Like the previous paper, the authors mention that their basic problem is the sparse

database of Facebook or generally Social media which is one of the main reasons why

we don’t prefer using those datasets to solve the cold start problem. Specifically in this

paper, a big problem was also the processing of the text during the second method,

where many users might have misspelled even the simplest word, making it really hard

to build the appropriate documents.

2.2.3 Cold-start Problem in collaborative recommender systems:
Efficient methods based on Ask-to-rate technique

In [7], the authors provide a review on how to use the ask to rate technique to eliminate

the cold start problem plus some different implementations of the technique. Generally,

these methods are categorized in adaptive and non adaptive.

They provide a method to use the K-nearest neighbour algorithm which was an

inspiration for the basic recommender of this dissertation. So to implement the K-

nearest neighbour on our recommender, the Pearson Correlation is used first to find the

similarity between the active user and all the other users. The Equation for the Pearson

Correlation can be seen below.

, ,

1

2 2

, ,

1 1

().()

(,)

() . ()



 

 



 



 

t m t i m i

t m t i m i

h

u a u u a u

m
t i h h

u a u u a u

m m

r r r r

sim u u

r r r r

Equation 2.2: Pearson Correlation 1

 -17-

Then, an aggregation function is used, to find the predicted rating for an item based on

the ratings that the K nearest neighbours have provided. In our dissertation we use this

function to predict the ratings that the active user will provide to all the movies of the

database. The aggregation function equation can be seen below.

,

1

1

(). (,)

(,)

(,)

h t h

t

k

u a u t h

h
t t uk

t h

h

r r sim u u

prediction u a r

sim u u







 




Equation 2.3:Aggregation Function

This paper was also really helpful to make a decision on what movies to present to the

new user. In most movie recommendation systems, by the time a user registers, the

system demands from the user to rate some movies so that the recommendation engine

will start to work. The system must be really cautious about those first movies that it

presents, because they need to provide useful information about the user, before the user

actually uses the system.

The paper suggests that the best method to make a profile of a new user is to ask for

information right away. This is done by presenting items, in our case movies, and ask

the user to rate them. Then the collaborative filtering system treats the new user

normally and predicts the ratings of the movies he hasn’t seen.

 -18-

The authors test different techniques based mostly on user effort and Recommendation

accuracy. The following table shows the different methods and their evaluation in

online and offline experiments. We can generally see that IGCN, Entropy0 and

Popularity are pretty high rated.

Table 2.1: Method Scoring

Methods User Effort Recommendation Accuracy

IGCN ★ ★ ★ ★ ★ ★ ★ ★ ★

(Log pop)xEnt ★ ★ ★ ★ ★ ★ ★ ★

Entropy0 ★ ★ ★ ★ ★ ★ ★ ★ ★

HELF ★ ★ ★ ★ ★ ★ ★

Popularity ★ ★ ★ ★ ★ ★ ★ ★

Item-Item ★ ★ ★ ★★ ★ ★

Entropy ★ ★ ★

Random ★ ★ ★

Two of the above methods were taken into account for our recommender, popularity

and entropy. The Popularity strategy is simply taking into account the movie’s

popularity by counting the number of overall ratings this movie has. We take into

account all users and all kind of ratings from 1 to 5. This is a really easy method to

implement and its really good for the user as it minimizes his effort more than any other

method, but the big problem is that it may create biased opinions on the database. This

happens because the more ratings a movie receives, meaning that its really popular, the

more likely it will be presented to the user, eventhough it might not be the best choice.

This method favours famous movies and keeps back unfamous movies that the user

might like, creating unequal distribution of ratings in our database.

 -19-

Pure entropy is another method that we concidered it might be a good idea to try on our

recommender eventhough it doesn’t score well in this paper. With Pure entropy, the

system suggests the movie that provides the most information for the recommender,

eventhough that may mean that the movie is one totally unknown to most people.

In the future, we will try to use the balanced strategy which is the popularity score

multiplied by the entropy. This method is the combination of Pure Entropy and

Popularity methods and although it was easy to implement, we didn’t have the

appropriate time to try it.

Another really interesting method that we will implement in the future and was inspired

by this paper is the Entropy0 which is the Pure entropy method but with taking into

consideration the missing values. This simply means that non-ratings are now filled

with 0 whereas 1-5 is the usual rating scale. He follows the formula provided in this

paper :

5

0

1
0() log()t i i i

ii

i

Entropy a p w p
w 

  


Equation 2.4: Entropy

Where w=0.5 is the weight of identifying missing values and Wi=1 in the range of 1-5

because this provided the best results. If we have Wi=0 then the Entropy0 turns into

Pure entropy of course. This method is meant to be slightly more successful that the

Popularity or Pure Entropy method.

Generally, there are two methods to ask your user information, adaptive and non

adaptive. Non-adaptive is when the same information or questions are provided to any

new user. This is what MovieLens does, using the popularity stragey, where you

suggest a movie based on how many users have rated it. This is what we also tried on

this dissertation but as we said before, we found out that although the implementation is

easy, the results are biased as people tend to like and rate high, movies that are popular

and not neceserally good.

 -20-

The adaptive method is when the questions for every new user are based on his history

or even, in our case, psychological profile. We tried the item-item personalized method

where movies are proposed until the user rates at least one. We actually demanded from

the user to rate at least 20 movies as this is a basic step for the recommender to work. If

the user rate 20 movies with various ratings, from low to high, then this method is

problematic with the accuracy as it does not identify movies that the user actually likes.

This is why we ask the user to give us his 20 favourite movies, because that way we

have a clear idea about what the user likes and recommend him movies based on his

highest rated movies .

We also thought about presenting first to the user the personality test, and then

suggesting him movies based on his top favourite genres, but again this might lead to

biased results. The personality test should be an extra help for the Knn recommendation

engine and not dictate the profile of the user so much .

What we finally did in our recommender is to find the most rated movies in the

Movielens dataset and present this movies and total random movies alternately. You can

see that on 5.7.

 -21-

2.2.4 Getting to Know You: Learning New User Preferences in
Recommender Systems

In [8], the authors study six techniques that can be used in collaborative filtering

recommender systems to solve the cold start problem. They both try offline and online

experiments and they come to the conclusion that each technique affects the user in a

different way, both in the user effort and accuracy of the predictions.

They stress the importance that the recommender system should ask the user to rate

items that he is more likely to have an opinion about. Minimizing the effort of the user

is a critical part , but at the same time, good recommendations must be provided.

One approach they suggest to the cold start problem is that pre-made user categories

can be created and the new user can be assigned to one of them. This part was the

inspiration to use the Big Five personality type test at, as it helps identify in which user

category the new user belongs to. Next step is to combine this with some actual ratings

of movies, something that the authors didn’t concider. They specifically quote that

“When these models are accurate they can be quite useful, but the premise of

personalized recommender systems and collaborative filtering is that a person’s

preferences are a better predictor of other preferences than other attributes”. In our case

this is not an issue because we know the personality type of the new user, and we

suggest him specific movies to rate that this kind of personality usually likes.

Again, the item-item personalized method is stressed in this paper, stating that it’s

probably the best method to solve the cold start problem. Although it outperformed

every other method, it didn’t provide the best recommendations but it was the best

considering the user’s effort. What they suggest is that item-item personalized method is

“too much personal”, presenting movies that are too obvious that the user will like. For

example, if a user rated a movie highly, then it will be recommended to him all the

sequels of that movie. Again, we treated this problem by providing both famous and

random movies for the user to rate in 5.7

 -22-

In this paper the authors also imply that users in their research prefer using techniques

that allowes them to rate many movies per page and not many pages with less movies

between ratings. This is the reason we display a 20 movie list to the user and give him

the opportunity to reload this page anytime he wants.

Last but not least, they mention that eventhough popularity and item item strategies are

really effective and user friendly, there definitely needs to be an amount of randomness

to the way the movies are presented to the new user. Randomness should be treated with

caution though because it may lead to excessive user effort and making the

recommender really difficult for the user.

 -23-

2.2.5 Learning preferences of new users in recommender
Systems: An information theoretic approach

In [9], the authors provide some information theoretic strategies to minimize the new

user problem. They state that the system must make sure that the user does not log off

the system because he faces a lengthy signup process and that he shouldn’t lose trust in

the recommender due to low quality recommendations. They both test their strategies

online and offline and finally the run an online experiment with actual users on a live

recommender system.

They state some pretty interesting observations about the way these techniques are

classified and they group them in either human, system or mixed controlled techniques.

So, in the context of the recommender system a human controlled technique is when the

user selects the items to rate, either by typing the titles or searching over the database. A

system controlled technique on the other hand is when the system itself decides on what

items will first be presented to the user to rate. And, last but not least, mixed controlled

technique is when both human and system controlled techniques are combined into one.

All of the above techniques have their advantages and disadvantages. The user

controlled scheme will definitely require more user effort but it will also make the user

feel good about the recommender and trust it more. Also, the user might provide biased

ratings, meaning that the user might not be actually aware of his exact preferences and

pick mostly movies that he remembers and not the ones that he actually likes the most.

An accurate system controlled scheme may not put the user in much effort but may

sometimes fall short in its recommendations as it doesn’t take into account the user’s

mood and actual preferences. It seems that the best solution is the mixed controlled

scheme and this is what we used in our system. We specifically find the top rated

movies and let the user pick which one’s he prefers to rate. We also provide some

random movies so that the picks are less biased and the user’s profile will be more

universal.

 -24-

We saw again in previous papers, that user effort and recommender accuracy are the

two base factors for the systems success. In this paper, the authors extend the work of

[8] and study the application of different item selection measures based on information

theory for the cold start problem. They test all the different measures and find different

set of items which the provide to the new user. Then they record the user’s input and see

how effective this set of items is to solve the cold start problem. This will be the base

for their mixed method system.

They then proceed with the components of their experimental platform and they suggest

using both user- based and Item-based K-nearest neighbours algorithm. In our

dissertation we only use the user based Knn as we believe that the Item based Knn

doesn’t offer much to the recommender. They also use MovieLens2 as their

experimental platfom where the user goes from page to page where each one contains

10-15 movies to rate. But what they find next on their online experiments is that

eventhough the demand for a lot of ratings from the user is requested, the users don’t

find that to be much of an effort and understand that this way the recommender will

operate better. Actually 80% of the users finished the sign up process which is a pretty

good percent concidering the effort that is demanded from the user. One user

specifically wrote “I understand why it is needed. I know it will make your

recommendations more accurate.” This part of the paper was an inspiration to ask for

the user to rate at least 20 movies and not 10 as we were planning at first.

In the conclusion they suggest working on the future on updating the user profiles based

on their age of evaluations, meaning that old ratings must be eliminated or new ratings

must have more weight. This is an interesting thought but its something that might again

be biased and this is why we didn’t experiment with it on our dissertation.

 -25-

2.2.6 A hybrid recommender system based on user-recommender
interaction

In [10], the authors create a hybrid recommender system based on the MovieLens

dataset combining random and k-nearest neighbor algorithms. They state that the most

current recommender systems seldom imply specific user-recommender interaction

scenarios in real-world environments and they try to solve this problem with the

creation of a new hybrid recommender system. This system will use the random

algorithm to solve the cold-start problem, something that was an inspiration in our

dissertation but we believe that using only the random algorithm will make the user

effort much higher. This is why we suggest to the new user a few random and a few

really famous movies to rate at the beginning.

Then they define the recommender behavior in 3 different steps. First, the recommender

accepts the user’s request, second the recommender presents N recommendations to the

user and third the system records the user’s choice for further usage. This is also a

small preview of how are our recommender operates. They also define the user behavior

in three steps. First the user gets the recommendations, second the user checks if the

recommendations match his preferences and third the user proceeds with a choice. The

user behavior in our movie recommender system is a little different, because the user

get a set of recommendations that includes different movies so he doesn’t have exactly

the choice to see if that set match his preferences. He can just pick a movie from the set

he was suggested.

The authors also provide us with assumptions to simplify the whole procedure. This was

an inspiration to provide our own assumptions in 5.4.

 -26-

In this paper, the authors divide the users of the Recommender System into two

different categories called the browse and the rate user. Browse user is the one who

specifies only which items are browsed and on the other hand, rate user is the one that

specifies the ratings to the items. In their study they only consider browse users, which

is something that is not helpful for our project, as our recommender does not work with

browsing in mind ,but with the users providing actual ratings. You can see below the

user and recommender behavior in their system.

Picture 2.2:The recommender Behavior

Generally this paper didn’t contribute much to our recommender system because it is

mostly based on the browsing experience of a user using a Movie recommendation

system. But, it introduced us to the hybrid approach of using the random and knn

algorithms which is something that we used in our own ways to solve the cold start

problem. Also, it inspired us to include a chapter that includes some important

assumptions about our recommender system.

 -27-

2.3 Personalization In Recommender Systems

Nowadays, with the Internet being the main source of entertainment, products and

services, personalization is a huge factor and a great area to study. Scientists start to

incorporate elements of the human psychology in human-computer interaction, and this

gets more and more important because computers should work with the users

preferences in mind. Some of those elements would be demographic information such

as age and gender, personal preferences such as music or movie taste and even

psychological aspects, meaning emotions or personality traits.

Computer scientists make a great effort to model the human psychological aspects and

include them in recommender systems, so to create better suggestions for the users and

make the recommender more personalized. There are many different ways to extract the

personality of a user, from his social media activities, or making him answer a simple

questionnaire. One might say that this can be confusing or demand a lot of effort from

the user, but the user must understand that by giving more input to the system, the

system will provide better output, meaning better recommendations. A big problem of

course is the low amount of data around people’s personality traits, but we hope that

this will change in the future.

In this part of the dissertation, we study different ways that were researched in the past

to gather and use the user’s personality into a recommendation system. Although these

papers are really interesting, their lack of data and implementation is something that

lead us to make a movie recommender system in Python with some actual Data and

provide substantial results.

 -28-

2.4 Literature On Personalization

2.4.1 Multi criteria pseudo rating and multidimensional user profile
for movie recommender system

Paper [11] is a simple introduction on how a certain aspect of human factor can be

applied on recommender systems. The main subject of this paper is reducing the

Sparsity Rating problem by incorporating contextual information such as where, how,

with whom and at what time the movie has been seen.

The Sparsity Rating Problem is caused when users in recommender systems rate only a

small number of items, and the system cannot calculate and find the neighbors of the

active user due to lack of co-rated items. This is why in this dissertation we ask for the

user to rate at least 20 movies at the beginning. Then pseudo ratings are being generated

and the recommender suggests to the user the one’s with the highest value.

In this paper, the authors attempt to enhance the quality of these pseudo ratings by

including contextual information of the user. Specifically, they do this on a movie

recommender system by applying Naïve Bayes algorithm and multi regression to

analyze the contextual information.

They also mention the Without Contextual Information Problem, where the

recommender system suggests different movies based on contextual information. It’s

totally different for the recommender, if someone wants to watch a movie with a friend

or alone. If he wants to watch a movie alone, then the recommender will see his ratings,

find his neighbors and suggest some movies, but if he wants to watch a movie with a

friend, then the ratings and pseudo ratings of this friend will chance the outcome of the

recommender, so that it will suggest a movie that they will both like.

Apart from the companion, this paper also presents the place, time and day dimensions,

which are pretty interesting and something that we will try in the future. Next step is

turning the movie data into separate vectors, which was an inspiration to do the same

into our recommender but instead we used the personality dimension.

 -29-

Moreover, it was really helpful to see that the ratings are then normalized. This is

something that we also did in our recommender. The users rate a movie with -1 if they

don’t like it, 0 if it's neutral and 1 if they like it. Although this is easy for the user to

understand, it needs to be “translated," meaning normalized, into something that the

recommender will understand. For example, later it will be really difficult to make

equations if a user rated a movie with a 0 because all equations will turn out 0. So, the

they convert the values to 0, 0.5 and 1. That way, equations will return 0 only if a user

rated a movie as -1 which is actually what we want. In our recommender we followed a

similar procedure which you can read in pages 111-112 of the Script.

The use of Naïve Bayes is a little questionable in this paper as this algorithm cannot

learn and understand interactions between variables and features. For example, if the

user loves to watch horror films and usually enjoys movies at night, the algorithm

cannot understand that the user might not like to watch horror films at night.

 -30-

2.4.2 Making recommendations better: An analytic model for
Human-Recommender interaction

Paper [3] is the main reason we decided to study how the Human Factor and personality

affects the Recommender systems. As described in the paper, Recommender systems

are not always capable of generating good recommendations for the user based only on

raw data. To improve the system, the recommender needs to understand the needs and

information seeking tasks of the user. The authors provide their own framework, which

is called Human-Recommender Interaction (HRI). It’s their way to connect the user

needs with the recommender algorithms.

Their two main assumptions are first, that recommenders cannot understand the reason a

user asks for recommendations and second, that recommenders should be trained to

have personalities and interact with the users in a conversational way. The second

assumption is the main reason we use the Big Five personality test so that the

recommender “knows” and operates accordingly to the user’s personality type.

Then, the authors proceed to the idea that there are different types of recommendations

based on what the user needs and not based on the casual thought that best

recommendation equals to more liked recommendations. They use HRI to understand

what the user actually needs, which is different most of the time because people tend to

have different needs based on what they search for , when they search for it and why

they search for it etc. For example, as stated in the paper, if a student is writing one of

his first papers and using a recommender for his research and still feels that something

is missing, he is actually looking for validation of his research and suggestion on

whether he missed something. The human-Recommender Interaction system makes the

assumption that this student is concerned about the effectiveness of the recommender

because he is a novice user, so the recommender must adapt and suggest more

appropriate recommendations based on this extra information the system generated

from the user.

 -31-

The authors mention that there are three Pillars to HRI shown in the following table.

Table 2.2: Pillars to HRI

 -32-

First is the Recommendation Dialogue, which is the procedure where the user passes

information to the recommender and the recommender returns his recommendations.

Second is the Recommender Personality, which is really important and is the perception

the user has for the recommender over the period of time. It’s actually how the

recommender adapts to the user’s needs. Last, the End User’s Information Seeking Task

is the reason the user needs and uses the recommender system. All this pillars are really

interesting and might be used in the future to make our recommender even more

advanced.

Generally, this paper appreciates the use of recommender systems and suggests that

people should establish a relationship of trust with the recommendation engine, but also

the engine must be able to adapt to the user needs. There is not any actual

implementation as we believe it’s pretty difficult due to the fact that they are no such

data that will allow testing this model. Some of the characteristics of each of the 3

pillars of the HRI are also represented on the Big Five personality test so although the

idea of this paper is pretty good, the lack of implementation and testing makes it a little

ambitious. In the future, apart from the personality test, it will also be a good idea to

implement a test to examine exactly what the user specifically needs from the

recommender. That way the recommender will be more user-centric and we will be able

to better analyze and understand the user’s needs. With us implementing the Big Five

personality test, we managed to emulate the two Pillars of this HRI engine, the

Recommendation Dialogue and Recommendation personality in a simpler and more

straight forward way, based on the current data that is out on the Internet.

 -33-

2.4.3 Personality, movie preferences, and recommendations

This paper is a relative small but interesting paper. In [12], the authors research the

connection between media preferences and personality plus the correlation between the

users opinion of a recommender system and the media ratings and viewing histories.

They provide a survey out of 73 Netflix users, which is not really that representative,

but they manage to show different correlations between different types of personalities

and what preferences these personalities have for specific genres of movies

Their result is that Conscientious, a personality trait that is included in the Big Five

personality test, is strongly correlated with people who trust and find more use in

recommendation systems. Their main focus on this paper is to answer whether there is a

relationship between human personality traits and movies preferences and whether these

personality traits help the user to gain trust over the recommender

They use the Big Five Personality test and then they collect ratings on different movies

recommended by Netflix. This is really similar to our approach in this Dissertation.

They then ask users to answer some simple questions so that they can figure out the

user’s actual attitude toward the recommender system. By using Pearson correlation

between the users personality scores on each of the Big Five Attributes and their

answers to the above specific questions, they gather some useful results on the table

below.

Table 2.3: Results

 Extra. Agree. Consc. Neuro. Open.

How often do you look over some of the

movies that Netflix recommends?
0,06 0,03 0,27 -0,14 0,10

How often do you add recommended

movies to your queue?
0,19 0,00 0,24 0,04 0,00

What percentage of movies in your queue

were recommended by Netflix?
0,11 0,10 0,25 -0,08 -0,16

How helpful do you think the

recommender system is?
0,15 0,15 0,32 -0,07 -0,20

How much do you trust the recommender

system?
-0,06 0,13 0,24 -0,13 -0,24

 -34-

We can clearly see that Conscientiousness is strongly correlated with users who are

more positive towards the use of the recommender system. This translates to the fact

that Conscientious people rate more movies than the average user, meaning that they

trust the recommender more, so the recommender has more data to analyze and make

recommendations for those users.

People with Conscientiousness are people who like to plan, think very carefully and are

well organized. The authors believe that there is a positive correlation between this kind

of people and recommender systems because recommender systems will help organize

their viewing experience. Recommender systems organize a plan, with movies to watch

and this people trust that plan and as a result they take more suggestions from the

system.

A negative aspect the authors found about this correlation is that Conscientious people

respond very badly when a recommender suggests a movie that they actually don’t like.

They are very sensitive to big negative changes so that one incident can negatively

impact the user’s impression that the system can actually help and provide a plan for

movies to watch.

The authors didn’t manage to find a correlation between Conscientiousness and genre

preferences and this was an inspiration to research the Big Five Traits and how they

relate to genre preferences. In this dissertation, strong correlations between the user’s

personalities and movie genres are created, using a pretty big data set, which helps

solidify more the results.

Even though the authors manage to find a great correlation between the user’s

personality and the recommender system, we take this study even further and we study

all the Big Five Traits and how they interact with the user’s genre preferences. The

questionnaire they use after the personality test is done is also a great idea and

something that we will improve and include in the future.

 -35-

2.4.4 Movie recommender system using the user's psychological
profile

In [13], the authors create a movie recommender using a hybrid recommender system

and the users personality, pretty similar to the recommender we created in this

Dissertation Project.

Their recommender system is called Movie Recommender and uses both collaborative

and content based filtering methods plus the analysis of the user’s personality and

psychological profile. Their main goal is to prove that there is an actual correlation

between personality traits and movie preferences, pretty similar to what we are trying to

achieve.

They use the IMDB Top 100 Greatest Movies of All Time as their database and

collected the movie title, the actors, its genre and score received on IMDB. In the field

of Data Mining and Recommender Systems, a database with 100 elements is not big

enough to base an actual conclusion from the operation of a Recommender System, so

this is why in our recommender system we used the Movielens dataset which has a lot

more data. In the next table you can see the distribution of movie genres on the dataset

they used.

Table 2.4:Movies/Genres

Movie Genre Number of movies having the genre

Adventure 18

Drama 56

Romance 22

War 9

FilmNoir 6

Comedy 18

SciFi 8

Horror 10

Action 13

Animation 2

 -36-

Then they proceed to compute four features for the hybrid recommender and they do

that by storing the history of all the previously rated movies and four different

personality scores, for all the users.

A big flaw in this paper is the choice of the questions that are used to come up with the

user’s personality. The authors pick a personality test with fewer than normal questions

but it’s not based on an actual research. It’s good that the authors try to make the

recommender faster and simpler so that the users will actually complete the Personality

test but we believe that they are not in the position to understand how the Personality

test actually works as there are many psychological factors involved. So, this is the

reason why we use the world known Big five personality test in our recommender

system. But generally, their personality test uses the four temperaments which are

sanguine, choleric, melancholic and phlegmatic.

Also another big problem with this paper is the fact that they make up how to evaluate

the test and the answers to figure out what type of personality the user is. This was a big

concern in our paper and this is why we used the Big Five Personality test, as it is the

only personality test that provides the calculations that needs to be done to find a user’s

personality , [14]. They come up with the following table.

Table 2.5: User Profile and Genre Preferences

Psychological
Profile Characteristics Movie genres

Choleric

extroverted, hot-tempered, quick

thinking, active, practical, strong-

willed, self-confident, independent

Horror, War, Action, C

omedy, Romance

Sanguine

extroverted, fun-loving, impulsive,

entertaining, persuasive, easily

amused, optimistic, receptive,

animated, excited

Action, Adventure,

Comedy, Drama,

Romance

Phlegmatic

introverted, calm, unemotional,

easygoing, slow, indirect, practical,

patient, persistent, consistent

Sci-Fi, Tragedy, Cult,

Drama. Film-Noir

Melancholic

introverted, logical, analytical,

factual, private, reserved, timid,

self-sacrificing, gifted

Animation. Film-Noir,

Parody, Cult

 -37-

Then they use collaborative filtering in a similar way also used in this Dissertation.

They first make an algorithm to find similar movies but they don’t mention where their

similarity is based on. We believe that there is no particular reason to find the similarity

between the movies as this will return biased recommendations. For example Rambo 1

and Rambo 2 should be really similar according to their algorithm but it’s not applicable

to recommend Rambo 2 to a user as this is not an intelligent recommendation, based on

the fact that you already asked the user to answer a personality test. It might seem a

little disappointing to spend time answering a personality test and then get the most

obvious recommendations. They also use the Knn algorithm the way we do.

As we can see on the final formula below, they put twice as much importance on the

movie similarity measure. Based on what was mentioned previously, this will make the

recommendations more biased and this is why we use three different formulas on our

dissertation, one with only the Knn, one with 50% personality and 50% Knn and one

with 80 % personality and 20 % Knn. Also, it seems that this recommendation engine

suggests only one movie which is pretty limited.

2 Movies Pr ofile

rec
m movies

Ratings KNN

arg max

* sim (m) sim (m)
movie

sim (m) sim (m)

 
  

   

Equation 2.5: Movie Recommendation Formula

They state that their basic problem was coping with the cold start problem due to the

fact that they have insufficient number of data and users hesitating to spend time filling

the personality test. This is something that we managed to solve using the MovieLens

database and using a more accurate and trustworthy personality test.

 -38-

They specifically mention” The fact that our system is based on first evaluating the

psychological profile of the users makes it impossible for a reliable evaluation of the

system's accuracy. Although there are several free datasets available (such as the ones

from MovieLens5, for example), they lack the psychological profile of the users and

therefore cannot be used to evaluate the system.”

This is not actually a problem and it’s an understatement. There is no need to have the

psychological profiles of the users in your dataset because the main focus is to find what

personality type is the current user and use this as a mean to understand what genres he

prefers. So you don’t actually need personality types of all the users but you just need to

determine the type of the active user so to come to a conclusion about the movies genres

he likes. Then, as we do in our recommender, you use that movie genres preference to

filter the final recommendations.

Also one might say that if you have the psychological profiles of all the users in your

dataset, you can use that to find K nearest neighbors to the current user but this is also

not important because we already use Knn for all the users and the current user. That

way the recommender is less biased because he gets recommendations from all the

different kind of user personalities and then they are filtered based on his genre

preferences. This means that he can get a movie that it might not belong in his favorite

genres but it will belong in his K-nearest neighbors’ favorite movies, so it might be an

outsider that he actually likes.

 -39-

2.4.5 Relating Personality types with user preferences in multiple
entertainment domains

This specific paper is the foundation of this dissertation project. It provides useful data

that help us achieve the connection between the human personality and the movie

recommender. Here follows a summary of what it’s included in this paper.

In [4], the authors present a study between different user personality types and their

preferences towards movies, tv shows, books and music. They analyzed a pretty big

number of Facebook user profiles (almost 54.000) that contained the user’s personality

scores in the Big Five Personality test and their interests in the entertainment domains

previously mentioned. This paper is one of the few that provides a through data analysis

of different users and comes up with data statistics that can be used into our

recommender.

They make a great point on the importance of personality, as it is a combination of

characteristics and qualities that are unique to every user and develop an individual way

of thinking and behaving. Having this in mind they proceed with the Five Factor Model,

which is what we also call the Big Five model, and use this to establish each different

user’s personality.

The authors based their research on a database released by a tool called myPersonality,

a Facebook application where Facebook users take psychometric tests. They restrict

their analysis to a subset of this database and after implying some data mining

techniques they come up with a dataset that includes the top 16 genres in movies, music,

books and tv shows, 53,226 users (where almost 60% are female an 40% are male) and

of course the Big Five Personality scores.

 -40-

They then analyze the dataset and they find important and meaningful correlations

between the Big Five personality types and the user’s movie preferences. They provide

the following table which we used in our own dissertation .

Table 2.6: Correlation between Genre and Big Five Traits

This table shows the personality based Traits (Openness, Contentiousness, Neuroticism,

Extraversion and Agreeableness) for the 16 different movie genres. Each row of the

table is a vector and the values on each cell are in the range of 1-5 and they represent

the average score of the Big Five personality traits of the users who had liked the

corresponding genres.

The highest the score of a column, the greener the column will be and the lowest the

score of the column, the redder it will be.. A remarkable notice is that some genres were

erased either from the movielens dataset or from this table so that we have the same

genres throughout the dissertation.

 -41-

We generally notice that users with high openness have a tendency to like tragedy, neo-

noir, independent, cult and foreign movies. High conscientiousness corresponds to users

who favor independent, adventure and sci fi movies. High Extraversion also

corresponds to users who favors drama, romance, comedy and action movies and high

Agreeableness means that the users like Adventure, romance, comedy and drama

movies. Last, high value in Neuroticism means that the users prefer cult tragedy and

animation movies. We should point out that all the preferences we mention for each

Big Five personality trait and each genre is in order of preference and not random and

this is what makes it interesting.

Furthermore, the authors apply the Apriori algorithm to derive some association rules

from the dataset. This might be a good idea to try in the future. Their results can be seen

in the table below.

Table 2.7:Apriori Rules

Here we can see the rules that have the most confidence. For example, the first two

rules imply that if a person has high contentiousness, high Extraversion and high

Agreeableness he would like comedy with a confidence of 67% and Support 1.87 %.

All this rules are really interesting but we don’t think that add extra value to the already

findings. What we will do in the future is to apply the apriori algorithm and derive

association rules that include the information of the user that is included in the

Movielens file and the genre. For example it will be interesting to extract rules that

include the gender, age and occupation with the genre preference. That way we can

imply those rules on marketing strategies and online ad campaigns.

 -42-

In the following and last table we can see the similarities between the different types of

personalities and the different genres. The color of the cells is the values of the

Euclidean distances between the genres associated to the user personality stereotypes.

For example a person who likes comedy and action genres has similar Big Five

personality based profiles. Also, people who like romance movies have similar

personalities to people who like comedy and action.

Table 2.8:Similarities

 -43-

 -44-

3 COLLABORATIVE
FILTERING RECOMMENDER
SYSTEMS

3.1 Concepts And Vocabulary

There are many common concepts and vocabulary used in the various recommendation

methods. In collaborative filtering though, many of those concepts are being used to

describe the problem and the requirements on the system.

So, in a Recommender system that uses collaborative filtering, we have the users which

they provide various ratings for different items. In our movie recommender, the users

are the people that rated all the various movies in the Movielens Dataset (plus the active

user), and the items are all the different movies. Those users provide ratings for these

movies, where rating is a general expression of preference. Those ratings can be either

explicit, meaning something that the user entered himself or implicit, something that

was calculated from the user’s behavior. In our system, the ratings are in a scale from 1

to 5 but generally the ratings of items in a recommender can take many forms. An even

simpler way would be to use a like/dislike system, for example, where the user enters 1

if he liked the movie and 0 if he didn’t but that would make our recommender less

accurate. This is a pretty good method for other kinds of recommender systems like the

ones used in e-commerce websites, where you only care if the buyer, for example,

bought a specific product or not.

 -45-

What happens next with the users and the items is that we form a ratings matrix like the

example shown below. Here we can see three different users and their ratings for

different movies. Nan is placed when the user hasn’t expressed his opinion about the

movie, meaning that he simply haven’t seen the movie, or he has seen it and didn’t

manage to rate it yet.

Table 3.1: Rating Matrix example

 Titanic Alien Terminator Forrest Gump

Nick 5 2 Nan 4

John 1 5 5 Nan

Peter 3 Nan 3 Nan

The first important goal of a collaborative filtering recommender system is to make

predictions, meaning to predict whether a user likes or not a specific item. For example,

again, if we check the ratings in the above table, we can predict that user Nick won’t

probably like the movie Terminator, as he had rated two similar movies (Titanic and

Forest Gump) highly and also rated Alien with a low rating. Alien and Terminator are

both action/horror movies, so we can see that generally Nick doesn’t like action/horror

movies and likes casual/ drama movies like Titanic and Forest Gump. As a conclusion

Terminator will not be a good option for Nick.

Second and most important goal of a recommender system is to make recommendations

to the different users. That means, predict first and then present a list with the best items

that the user will most probably like. In collaborative filtering, this happens by looking

what similar users with the active user like.

 -46-

3.2 How It Works

The most common way of getting a recommendation in real life is by asking a friend for

his opinion, preferably someone who usually likes the same stuff as you do. In this

Dissertation, for example, we are looking for “friends” that have a similar taste with the

active user in movies.

This is exactly the idea behind collaborative filtering, and that’s what the word

collaborative actually means. It’s a way in which users help each other out in navigating

the catalogue of different products, in our case, movies, so to find things that they like.

So the basic premise of Collaborative Filtering is that if two users have the same

opinion about a bunch of products, then they are likely to have the same opinion about

other products too. Collaborative Filtering is a general term and any algorithm that

relies only on user behavior (history, ratings, similar uses, etc) is a Collaborative

filtering algorithm.

The objective of the algorithm is to normally predict the active user’s ratings for

products he hasn’t yet rated. The input for the algorithm is usually a database that

contains different users and their ratings for different products in the past. As we

previously mentioned, these ratings could be either explicit or implicit. Picking this

input and the past ratings of the active user on different products, the collaborative

filtering algorithm will predict the ratings for the products the user hasn’t checked out

yet. With these predicted ratings, you can sort the products and recommend the top

picks for the active user..

 -47-

3.3 Basic Steps

Here follow the basic steps of a simple Collaborative Filtering operation.

1. The set of ratings for the active user is identified.

2. The set of other users who are most similar to the active user, according to a

similarity function (in our case Pearson Correlation) is also identified.

3. Then, we identify the products that these similar users liked.

4. A prediction is generated, meaning a rating that would be given by the active

user for each of these products.

5. A set of top N products is recommended based upon the top highest predicted

ratings of the products in the previous step..

3.4 Taste Assumptions

There are two basic assumptions that data scientists made back then about the different

users of the recommender system. The first and most important is the fact that if the

active user has a high pair similarity correlation with another user, then we assume that

apart from their already rated products that they share similar tastes, they also share

similar tastes on future products that they both haven’t rated. That generally means that

we assume that all users have stable tastes and that the strongly correlated users will like

related things in the future. This assumption helps the recommender system work well

as it’s easier to calculate and keep the useful neighbors of the active user.

The second assumption that helped the operation of the recommender in the past was

one which implied that if the correlated users agree on one part of the recommender ,

they will likely agree to more parts too. This is a really helpful assumption, especially in

a movie recommender system like our 50/50 system. That means, for example, that if

two users tend to rate highly movies whichinclude Vin Diesel, we assume that they like

Action films. Or of course, the opposite.

Those assumptions that scientists made back in the days, led us to make our own

assumptions on 5.4.

 -48-

3.5 K-nearest Neighbors Algorithm

Knn is one of the most famous algorithms in modern data science. It is considered a

non-parametric algorithm, meaning that it does not make any assumptions about the

data distribution. This is a really important and helpful feature in the modern world, as

most data don’t follow the typical assumptions made. Knn is also what we call a lazy

algorithm, meaning that there is a minimal training phase in the data, making the

algorithm really fast. This means that Knn keeps track of all the data all the time and

bases his decisions on that. This makes the testing phase a really costly procedure.

One of the most important assumptions in the Knn algorithm is the fact that it assumes

that all data are in a feature space or even better, a metric space. The data are usually

vectors, as you can also see in this dissertation. All data are considered different points

in this metric space.

Also, really important is the number k. This is the number of “neighbors” that the

algorithm will have in mind when it makes its classification. It’s a common technique

to make this number equal to the square root of the number of data, but the search for

the optimal k is a whole different area of study by itself.

3.5.1 Advantages of Knn over other algorithms

One of the main advantages of the Knn algorithm is its simplicity. It’s one of the easiest

algorithms to implement as you only need to configure and tune k, meaning the number

of neighbors that will be used in the prediction. Numerical predictions are easy to

interpret, and you can easily see any given time which neighbors are being used for the

prediction.

Another advantage is the fact that it makes explaining the recommendations to the users

really easy. In item-based recommender systems, for example, the active user is

presented with the neighbors’ items and their ratings, so he gets a justification on why

these items were suggested to him.

 -49-

 Efficiency is also a big factor in Knn since it’s a lazy algorithm and requires no costly

training phase of the data. Everything can happen in offline mode, and all the neighbors

and recommendations can be stored with little memory usage. This can make the

recommender scalable to millions of products and users and can even determine which

variables are important, improving the recommendations.

Last but not least, the fact that Knn is an “online” technique is a big plus, especially in

recommender systems. This actually means that new items and users can be added at

any time without retraining the dataset. This makes the Knn one of the most stable

algorithms, in contrast with, for example, the support vector machines algorithm where

retraining of the data is required.

3.5.2 Weaknesses of Knn over other algorithms

Apart from all the advantages, Knn has also some disadvantages. One major

disadvantage is the fact that all the data from the dataset has to be “present” in order to

make predictions. This is a time issue as the algorithm has to compare every new item

or new user with all the previous and of course, in a dataset with millions of items and

users, this process takes a long time. Generally making the predictions is very expensive

as you have to calculate the distances between all the different data points.

Furthermore, finding out the correct weights and scaling factors might be a little

difficult to determine, as a lot of time, trial and error is needed before finding the right

ones.

Last, in Knn we have what we call the “Curse of Dimensionality," which is a problem

that occurs when the solution space has more than one dimensions. That leads to big

differences between the performance of the algorithm on the unseen data and the

training set. In more details, this means that even though Knn works really well with a

few input variables, if these inputs increase, then the dimensions also increase, and the

more dimensions, the more distance is created between the data points. This is

considered an unexpected behavior of distances.

 -50-

3.5.3 Explanation of Knn operation

Here we will present you with a simple example to understand how the Knn operates. In

the following diagram, we have three red circles and three green squares. They

represent what we call so far, the data points and also the neighbors of the blue star.

Picture 3.1: Knn Operation 1

The main point of the Knn algorithm is to find if the blue star is a red circle or a green

square. Now as we said before we need to arrange the value of k, meaning how many

nearest neighbors we will have in mind when we will try to figure out where the blue

star belongs. For now let’s say that k=3 and that leads us to the following picture.

 -51-

Picture 3.2: Knn Operation 2

We can see now that a circle that has the blue star as its center was created, and it

includes only the three red circle data points. So we can say with great confidence that

the blue star should belong to the red circle family as his closest neighbors are all red

circles. The choice of k was crucial in this example, and next on, we will study how to

pick the best K for each case.

 -52-

Here follows an example that can help you understand how important k is. In the

following picture, we can see a similar example to the previous one but with more data

points. Again, we are trying to find if the blue star is a red circle or a green square.

Picture 3.3: Knn Operation 3

First, we try to put the value of k=3. That means that we only consider the three nearest

neighbors when we are trying to figure out the blue star. We can see that if k=3, then the

blue star will probably be a red circle.

Picture 3.4: Knn Operation 4

 -53-

If we change the value of k to be equal to 4, we can currently see that we can’t decide

what the blue star is, because now we take into account four neighbors, and we can see

that the four nearest neighbors of the blue star are two red circles and two green squares.

Picture 3.5: Knn Operation 5

Last, if we change the value of k to be equal to 5, we can see that now the blue star is

definitely a green square as we have three green square neighbors and two red cirle

neighbors.

Picture 3.6: Knn Operation 6

 -54-

In theory, the more neighbors we pick (high k), the better, but in order to do that you

need to find a way to determine how their preferences will be related to the preferences

of the active user. This of course, will generate a lot of noise as it’s virtually impossible

to do in a big database with a lot of dissimilar neighbors.

So a normal number for k is something between 25-100 neighbors or the square root of

the number of data we have, which is what we used in this dissertation. If you have

fewer neighbors, then it’s easier to focus on the most similar neighbors and improve

accuracy by eliminating noise. On the other hand, it will be much harder to find related

users, so the number of items that you will be recommended on the final phase of the

recommendation process will be decreased or be inaccurate.

3.6 Calculating Similarity Scores

After collecting all the different data points in knn you need a way to determine how

similar those data points are. In order to do this, you need to have a similarity score

between the different points, something that determines their similarity. There are many

ways to do this, but the most famous ones are the Euclidean distance and Pearson

correlation. In this dissertation, we picked Pearson correlation.

3.6.1 Why we choose Pearson correlation?

Since we are working on a movie recommender that has all the movies rated on a scale

of 1 to 5, we picked Pearson correlation because it’s the most appropriate one to use for

measurements that belong in an interval scale. The basic advantage of this correlation is

that it corrects for rating inflation, meaning that if a User tends to give lower ratings

than another user, but their tastes still fit, then using Pearson correlation, they are still

supposed to have similar preferences. That means that if the difference between their

ratings is consistent, then there is still a correlation between those users in contrast with

the Euclidean distance where the two users will not be correlated because one is harsher

than the other.

 -55-

3.6.2 How Pearson correlation Works

As we mentioned before, Pearson Correlation is used as a similarity metric which tells

us how similar users are in our movie recommender. It helps us find the nearest

neighbors when we already have represented the user vectors as data points.

So given any two variables, the correlation is a measure of how similar those variables

are or how similar the changes in those variables are. The Pearson correlation is nothing

but the correlation that you will normally measure when you are trying to do something

like a linear regression.

So, having in mind that the vectors are the user’s ratings for different movies, each user

might have a certain bias. As we said before, some users might rate some movies highly

and some other users might have a general tendency to rate everything low. Pearson

correlation helps to account that by normalizing each user's rating by their average

rating.

Let’s say we have two users, the red circle vector represents the user X and the green

circle vector represents the user Y. User X has an average rating which will be the mean

of rating x1, x2 to xn and also User Y will have his own average rating that will be the

mean of y1, y2 to yn ratings.

Picture 3.7: Pearson Correlation Operation 1

 -56-

Now we take user X and we shift him by his mean, meaning that each number x1,x2 to

xn is adjusted by the user’s mean rating. This is what we called normalization because

now this will give us a new point where the user will be normalized by his average

rating. If 𝑥̅ is the average rating of user x, the new tuple of the user will be x1-𝑥̅, x2-𝑥̅,

x3-𝑥̅ and so on.

Picture 3.8: Pearson Correlation Operation 2

 -57-

Now we do the same thing with user Y, meaning that we shift him based on his average

rating. So again each number in the new tuple will be y1-𝑦̅, y2-𝑦̅, y3-𝑦̅ and so on, where

𝑦̅ is the mean rating of all the movies that users Y has rated.

Picture 3.9: Pearson Correlation Operation 3

 -58-

So currently we have adjusted user X and user Y to be represented such as, some of the

bias that was preexisted has now been removed, and we managed to do that by

normalizing for the average rating. The cosine similarity between these two new vectors

is the Pearson correlation.

Picture 3.10: Pearson Correlation Operation 4

 -59-

The formula for the Pearson Correlation is the following :

Corr(x,y)=
∑ (𝒙𝒊−𝒙̅)(𝒚𝒊−𝒚̅)𝒊

√∑(𝒙𝒊−𝒙̅)
𝟐

 √∑(𝒚𝒊−𝒚̅)
𝟐

=
(𝑥−𝑥̅, 𝑦−𝑦̅)
‖𝑥−𝑥̅‖‖𝑦−𝑦̅‖

=CosSim(𝑥 − 𝑥̅, 𝑦 − 𝑦̅)

Equation 3.1: Pearson Correlation 2

As we can see again the pearson correlation is nothing more than the cosine similarity

of 𝑥 − 𝑥̅ 𝑎𝑛𝑑 𝑦 − 𝑦̅. As we said again, 𝑥̅ represents the mean of all the ratings that the

user X has given and 𝑦̅ represents the mean of all the ratings the user Y has given.

3.7 Predict Rating Formula

Once we find the k-nearest neighbors of the active user, we use those neighbors to find

the rating that the active user will give to any particular product. The formula used for

this is the following:

𝑝𝑎,𝑖 = 𝑟̅𝑎 +
∑ (𝑟𝑢,𝑖 −𝑢∈𝑈 𝑟̅𝑢) . 𝑤𝑎,𝑢

∑ |𝑤𝑎,𝑢|𝑢∈𝑈

Equation 3.2:Predict Rating Formula 1

Here follows the explanation of the predict rating formula and how it works.

 -60-

First, let’s say that we have to predict the rating of the Active user a for product i. So

 𝑝𝑎,𝑖 , is the predicted rating for the active user for product i . We first start with what

the average rating of the active user a is for any product. So, if we have no information

about what the active user’s rating for a product would be, we just pick the average

rating that the neighbors have given to other products (𝑟̅𝑎) .

Now we have some information, we have the nearest neighbors for the active user and

we have their ratings for the product i. So we have to incorporate this into the prediction

for the active user’s rating. Then we have a summation over all the users in this set of

nearest neighbors of the active user a. So for each of those neighbors we are computing

some numbers and then picking the summation of that number (∑𝑢∈𝑈). As we

might expect, that number has to do with the rating of that nearest neighbor for the

product i.

So given a user u, in the set of nearest neighbors of the active user, 𝑟𝑢,𝑖 is the rating of

this user for the product i . Important think to notice is that we don’t just directly use the

user’s rating for the product i , we are also adjusting it by that particular user’s mean

average rating 𝑟̅𝑢 . So we use (𝑟𝑢,𝑖 − 𝑟̅𝑢) for our calculations.

Last and most important step is to multiply this summation with 𝑤𝑎,𝑢 which is a weight

for that rating. This means that 𝑤𝑎,𝑢 is the similarity between user u and the active user

a, meaning in our case, the value of the Pearson correlation calculated for those 2 users.

In any case, what we need to remember is that the predicted rating is the weighted

average rating of the nearest neighbors of a particular user.

 -61-

3.8 How a Typical Movie Recommender System
Works

After explaining the different concepts and vocabulary used in Recommender systems

and particularly the ones using Collaborative filtering, we can proceed in the more

detailed approach used in Movie Recommender systems.

So, the idea of a Movie Recommender system is that different people rate movies in

order for the system to understand their taste and return useful recommendations. In the

following Picture we can see the active user and the different other users registered in

the system.

Picture 3.11: Recommender System Operation 1

These registered users have already provided to the system various ratings for various

movies. We assume that these ratings are in the range of 1-5, and they are pure integer

numbers, like the way users rate in our 50/50 Movie Recommendation system. In the

next picture, we can see that these ratings get through the collaborative filtering engine,

after they are stored within the systems database, and they then used to make user

correlations, meaning, finding and grouping users who share the shame taste.

 -62-

This correlation, which we call pairwise correlation, is represented by a number which

is close to 1 if two users share similar tastes and close to -1 if they don’t. If the pairwise

correlation is close to 0, then this means that they sometimes share the same interests

and sometimes not. One really important factor is to also count the pieces of data these

correlations are based on because that way we will be able to compute the overall

pairwise correlation of two users and not just their correlation on one simple movie.

Picture 3.12: Recommender System Operation 2

 -63-

After all these calculations are done, it’s time for the active user to make a request. That

usually translates into asking a recommendation from the recommendation system. In

our Movie recommender system it means “suggest a list of movies that I will enjoy."

Picture 3.13: Recommender System Operation 3

 -64-

Now, we can see on the next picture how collaboration filtering engine takes action.

When the request from the active user comes in, the system uses the correlations that

were calculated previously to find the nearest neighbors (users) that have similar tastes

with our active user. This is the K-nearest neighbor method and is the one we used for

this project. So, the people in red are actually the users who have the highest correlation

with the active user, meaning that the correlation score is close to 1 as we mentioned

earlier.

Final step is to have those strongly correlated users ratings combined by our

collaborative filtering engine and suggest movies to the active user.

 Picture 3.14: Recommender System Operation 4

 -65-

3.9 Understanding The Computations

Here follows a really simple example of how a small movie recommender system works

and how the calculations and computations are made to make the final movie

recommendations. In the next table, we can see a rating matrix with 7 different users

and their ratings for 6 different movies. What is our main goal is to predict if the active

user will enjoy more Trainspotting or Liar Liar and recommend it to him.

Table 3.2: Computations 1

Titanic Alien Terminator

Forrest
Gump

Trainspotting Liar liar

Active User 4 1 2 4

John 1 5 4 5

Peter 1 1 1 1 1 1

Joe 4 1 3

Mary 1 3 1 3 1

Bill 5 1 5

Jenny 4 1 1

 So first, as we previously said, we are looking for users who share similar tastes to the

active user. One of those users in our example is Jenny, as she gave Titanic the same

rating as the active user and Terminator a pretty close one too.

Table 3.3: Computations 2

 Titanic Alien Terminator Forrest Gump Trainspottinq Liar liar

Active User 4 1 2 4

John 1 5 4 5

Peter 1 1 1 1 1 1

Joe 4 1 3

Mary 1 3 1 3 1

Bill 5 1 5

Jenny 4 1 1

 -66-

Next, we can also notice that the active user and John don’t share the same taste in

movies which even that might be helpful if used in a reversed sense.

Table 3.4: Computations 3

 Titanic Alien Terminator Forrest Gump Trainspottinq Liar liar

Active User 4 1 2 4

John 1 5 4 5

Peter 1 1 1 1 1 1

Joe 4 1 3

Mary 1 3 1 3 1

Bill 5 1 5

Jenny 4 1 1

An interesting situation is Joe and the active user. Joe share really similar tastes with the

active user but he is not going to be helpful in the recommender system as he hasn’t

seen any of the two movies we are interested in (Trainspotting, Liar Liar).

Table 3.5: Computations 4

 Titanic Alien Terminator Forrest Gump Trainspottinq Liar liar

Active User 4 1 2 4 ? ?

John 1 5 4 5

Peter 1 1 1 1 1 1

Joe 4 1 3 ? ?

Mary 1 3 1 3 1

Bill 5 1 5

Jenny 4 1 1

 -67-

So then it’s time for the recommender to make a rating prediction for the movie

Trainspotting for the active user. The two users who are the most important are John

and Jenny. Jenny has almost similar tastes to the active user, and she doesn’t like the

movie and John who has almost the complete different taste, likes the movie a lot.

Those two facts can lead to the conclusion that the active user won’t probably like

Trainspotting.

Table 3.6: Computations 5

 Titanic Alien Terminator Forrest Gump Trainspottinq Liar liar

Active User 4 1 2 4 ? ?

John 1 5 4 5

Peter 1 1 1 1 1 1

Joe 4 1 3

Mary 1 3 1 3 1

Bill 5 1 5

Jenny 4 1 1

Now we have to follow the same procedure for the movie Liar Liar but the only safe

evidence we have is that Bill who has similar taste to the active user, gave it an

excellent rating. That means that the recommender system would most likely pick Liar

Liar to recommender to the active user.

Table 3.7: Computations 6

 Titanic Alien Terminator Forrest Gump Trainspottinq Liar liar

Active User 4 1 2 4 ? ?

John 1 5 4 5

Peter 1 1 1 1 1 1

Joe 4 1 3

Mary 1 3 1 3 1

Bill 5 1 5

Jenny 4 1 1

 -68-

4 HUMAN FACTOR AND THE
BIG FIVE PERSONALITY
TEST

4.1 Human Factor

Human factor is the procedure of designing systems and products, which take into

special account the interaction between them and the people who will use them. This

practice is widely used in industrial design and engineering and has seen contributions

from psychology, physiology and anthropometry. Human factor is α way to optimize

the best user experience and overall system performance. As mentioned in the

International Ergonomics Association, the official definition of human factor is the

following:

“Ergonomics (or human factors) is the scientific discipline concerned with the

understanding of interactions among humans and other elements of a system, and the

profession that applies theory, principles, data and methods to design in order to

optimize human well-being and overall system performance.”

Also, we find another definition in the following quote from the U.S. National Academy

of Engineering’s:

“Engineers and engineering will seek to optimize the benefits derived from a unified

appreciation of the physical, psychological and emotional interactions between

information technology and humans. As engineers seek to create products to aid

physical and other activities, the strong research base in physiology, ergonomics and

human interactions with computers will expand to include cognition, the processing of

information, and physiological responses to electrical, mechanical and optimal

stimulation”

 -69-

In this dissertation, we implement the human factor in the recommender systems and try

to maximize the user-system interaction and make the user trust the recommender more.

Our way of doing that is by incorporating the Big Five personality test which helps the

recommender understand better each user and filter the recommendations based on the

active user’s personality.

Every system has a goal. The goal of our Movie Recommender is to provide the best

movie recommendations for every different user, based on his personality and his

previous movie ratings. To achieve this goal, both the system and the user must operate

in a correct and meaningful way. The efficiency of the system is totally dependable on

both the performance of the recommendation engine and the performance of the user.

That means that if the recommendation engine is poorly designed and provides bad

recommendations, or it demands too much effort from the user to operate, the user will

lose interest and trust, and the system will fail. Likewise, if the user doesn’t trust the

system from the beginning and provides false ratings or doesn’t fulfill the Big Five

personality test, then the system again will fail.

In the following picture, we can see a clear version of the Human- Movie recommender

interaction. We can see that both are a combination of different subsystems used for

input, processing and output. Below we will examine and explain the complete

procedure that the human must follow, so that the system will operate correctly.

Picture 4.1 Human-Movie Recommender Interaction

 -70-

First, the user must act and provide ratings to the recommender. Without the action

from the user, the movie recommender won’t have an input and won’t be able to

operate. The central algorithm of the recommender system is completely analogous to

the knowledge and preferences of the user. The algorithm of the movie recommender

works based on other user's preferences and also needs the active user’s preferences to

operate. Finally, the recommender produces recommendations and the user must have

an understanding for those recommendations so to trust the recommender and use it

again in the future.

Furthermore, the following diagram is pretty helpful to describe the exact procedures

we had to make to complete this dissertation project. First, in the movie recommender

system, we researched the cold start problem so that the user will provide the best

ratings to the recommender system. A big plus is the Big Five personality test but

currently there is no need to include it in the diagram. Second, we designed a fast and

efficient algorithm that produces recommendations based upon the user nearest

neighbors. Last but not least, we presented the final recommendations.

So a good recommendation system has all the above characteristics, but the human

factor can contribute massively to its usability. As we mentioned earlier, our way of

adding the human factor into this movie recommender system is by introducing the

human personality into the equation. This addition makes it easier for the system to

communicate and understand the user’s needs. There is always a tradeoff between

usability and flexibility but in our case, we believe that the user must pass all the

appropriate procedures so that the recommender gets the most information.

Last but not least, there are for sure some drawbacks in the addition of the Personality

test into the movie recommender system, and they correlate a lot with some general

weaknesses of the Human Factor and ergonomics methods. First, with the addition of

the Big Five personality test, it takes more time for the user to sign in and more

resources of information than the usual sign in methods used in other movie

recommender systems. Second, extra planning and research were needed to make the

algorithm take into account the personality scores of each user. And finally, there are

many methods to detect the active user's personality and there is no correct way to do it,

so it’s completely subjective and depends only to the judge of the programmer.

 -71-

4.2 Background On The Big Five Personality Test

The Big Five personality test is considered to be one of the most accepted ways to

identify the personality of a person in modern academic research and psychology. It’s

actually the result of a statistical study of the answers to specific questions (personality

items) people from Western Europe and America provided. The researchers then can

use this data to find the best ways to summarize an individual.

Although, there were many personality variables, Extraversion, Agreeableness,

Conscientiousness, Neuroticism and Openness to Experience where the ones that stood

out the most and the ones that are being used in the Big Five Personality Test.

4.3 What Are The Big Five traits?

The big five personality test helps you calculate your score for five different personality

traits, which are the following as stated [14]:

• Extroversion (E) is the trait of seeking fulfillment from sources outside the self or in

community. High scorers tend to be very social while low scorers prefer to work on

their projects alone.

• Agreeableness (A) reflects how much individuals adjust their behavior to suit others.

High scorers are typically polite and likeable people. Low scorers tend to 'tell it like it

is'.

• Conscientiousness (C) is the personality trait of being honest and hardworking. High

scorers tend to follow rules and prefer clean homes. Low scorers may be messy and

cheat others.

• Neuroticism (N) is the personality trait of being emotional.

• Openness to Experience (O) is the personality trait of seeking new experience and

intellectual pursuits. High scores may day dream a lot. Low scorers may be very down

to earth.

 -72-

4.4 Some Issues With The Big Five Personality Test

It is important to point out that there are many aspects of the human personality and

psychology that the Big Five Personality Test can’t portray. When we are talking about

“traits” of a person, we are talking about something much narrower and conceptually

distinct. The Big Five traits are based on empirical and statistical studies, and it’s not a

theory of personality. This is why we should consider the results of this test to be a

partial and general description of the user’s personality but on the other hand, that

would be more than enough for our system, as it minimized the user’s effort and

provides the general characteristics of the user.

4.5 Further Analysis Of Each Trait

Extraversion

Extraversion is the trait that describes a person being an extrovert. This person is full of

energy and enthusiasm. They tend to take actions and handle opportunities with

excitement. They like being the center of attention and starting conversations.

The opposite of extraversion are people who are introverts. They are quiet and don’t

like to be around people, but that doesn’t mean they are shy or depressed. They just

prefer to be alone.

Agreeableness

People with high Agreeableness tend to be friendly, helpful and ready to compromise

their needs for others. They are really optimistic and believe that most people are

trustworthy and honest. They also tend to be more popular

Users with a low level of Agreeableness are usually selfish and believe that their needs

are above everything else. They usually don’t help others and are unfriendly and

sometimes rude. On the other hand, they can be really good in making the correct

decisions in tough times.

 -73-

Conscientiousness

Conscientiousness is the trait that has to do with how one person controls his instincts

and his impulses. A person with high level of conscientiousness is a person who thinks

about the future and the consequences of his actions. High conscientiousness usually

means also high intelligence, being able to organize and plan goals and being also able

to sacrifice short joys for a greater future. You can consider a person with high

conscientiousness as both wise and cautious at the same time. Conscientious people

though can be workaholics and perfectionist.

People with low conscientiousness are usually people who can be more spontaneous

and fun as they act based on their instincts and impulses than logic. This though may

lead in many troubles like being antisocial or even expressing a destructive behavior.

They prefer immediate results and rewards and don’t have the patience to follow a plan

for a better future. They are unreliable and they usually lack ambition.

Neuroticism

Neuroticism is the tendency that each person has to experience negative feelings and the

inability to handle the normal demands of life. People with high neuroticism can

experience depression, anxiety attacks, bursts of anger and generally everything that has

to do with extreme reactions to emotions. They are most of the time in bad mood, and

they can’t think and operate clearly, making it really difficult to take the correct

decisions as they will be usually under a lot of stress.

Of course, people who score low on neuroticism are less sensitive in stress and can

control their emotions better. Negative feelings are not something that concerns them

and they can stay calm and relaxed even in difficult situations. Although that doesn’t

imply the opposite, meaning that they are full of positive feelings, as this is a

characteristic of mostly people with high Extraversion

 -74-

Openness to experience.

Openness to Experience is what separates people with big imagination and people who

are generally down to earth. People with high Openness are usually artistic and curious

and more connected to their feelings. This trait tends to be a characteristic of people that

prefer individualism and culture.

People who score low on openness to experience tends to have common sense and

narrow interests. They are straightforward people and may even consider art, science

and music something useless and with no point. They are generally conservative and

resist to any change, positive or negative.

4.6 Big-Five Traits Markers

Here follows a list of the questions in the Big Five Personality test and the

corresponding Personality trait that it affects. The + symbol means that the answer on

these specific questions raises the score of the specific personality trait and the – symbol

that it lowers it

Extraversion

+

Am the life of the party.

Feel comfortable around people.

Start conversations.

Talk to a lot of different people at parties.

Don't mind being the center of attention.

–

Don't talk a lot.

Keep in the background.

Have little to say.

Don't like to draw attention to myself.

Am quiet around strangers.

 -75-

Agreeableness

Conscientiousness

+

Am interested in people.

Sympathize with others' feelings.

Have a soft heart.

Take time out for others.

Feel others' emotions.

Make people feel at ease.

–

Am not really interested in others.

Insult people.

Am not interested in other people's problems.

Feel little concern for others.

+

Am always prepared.

Pay attention to details.

Get chores done right away.

Like order.

Follow a schedule.

Am exacting in my work.

–

Leave my belongings around.

Make a mess of things.

Often forget to put things back in their proper place.

Shirk my duties.

 -76-

Neuroticism

Oppenness

+

Am relaxed most of the time.

Seldom feel blue.

–

Get stressed out easily.

Worry about things.

Am easily disturbed.

Get upset easily.

Change my mood a lot.

Have frequent mood swings.

Get irritated easily.

Often feel blue.

+

Have a rich vocabulary.

Have a vivid imagination.

Have excellent ideas.

Am quick to understand things.

Use difficult words.

Spend time reflecting on things.

Am full of ideas.

–

Have difficulty understanding abstract ideas.

Am not interested in abstract ideas.

Do not have a good imagination.

 -77-

4.7 Big Five Traits And Human Characteristics

The following table will help understand and relate some basic human characteristics

with the Big Five Personality traits. We also provide the opposite trait so that it will be

easier to get an idea about what approximately is each trait.

Table 4.1: Connecting Traits with Human Characteristics

Big Five Traits Opposite trait Facets

Extraversion Introversion

Gregariousness (sociable)

Assertiveness (forceful)

Activity (energetic)

Excitement-seeking (adventurous)

Positive emotions (enthusiastic)

Warmth (outgoing)

Openness
Closedness to

experience

Ideas (curious)

Fantasy (imaginative)

Aesthetics (artistic)

Actions (wide interests)

Feelings (excitable)

Values (unconventional)

Conscientiousness Lack of direction

Competence (efficient)

Order (organized)

Dutifulness (not careless)

Achieve merit striving (thorough)

Self-discipline (not lazy)

Deliberation (not impulsive)

Neuroticism Emotional stability

Anxiety (tense)

Angry hostility (irritable)

Depression (not contented)

Self-consciousness (shy)

Impulsiveness (moody)

Vulnerability (not self-confident)

Agreeableness Antagonism

Trust (forgiving)

Straightforwardness (not demanding)

Altruism (warm)

Compliance (not stubborn)

Modesty (not show-off)

Tender-mindedness (sympathetic)

 -78-

4.8 Big Five Personality Test Questions

Here are the questions that the user has to answer so that we can understand the way he

acts and how his personality is structured. The user must answer these questions and

describe him as he is now and not as he wishes to be in the future. In order to do that,

the user can make a comparison between him and other people similar to his age and

sex. As we have previously mentioned, the user has to score the questions with an

answer from 1-5 where,

• 1=disagree,

• 2=slightly disagree,

• 3=neutral,

• 4=slightly agree and

• 5=agree.

Before all the questions we have the prefix “ I “ .

1. Am the life of the party.

2. Feel little concern for others.

3. Am always prepared.

4. Get stressed out easily.

5. Have a rich vocabulary.

6. Don't talk a lot.

7. Am interested in people.

8. Leave my belongings around.

9. Am relaxed most of the time.

10. Have difficulty understanding abstract ideas.

11. Feel comfortable around people.

12. Insult people.

13. Pay attention to details.

14. Worry about things.

15. Have a vivid imagination.

16. Keep in the background.

17. Sympathize with others' feelings.

 -79-

18. Make a mess of things.

19. Seldom feel blue.

20. Am not interested in abstract ideas.

21. Start conversations.

22. Am not interested in other people's problems.

23. Get chores done right away.

24. Am easily disturbed.

25. Have excellent ideas.

26. Have little to say.

27. Have a soft heart.

28. Often forget to put things back in their proper place.

29. Get upset easily.

30. Do not have a good imagination.

31. Talk to a lot of different people at parties.

32. Am not really interested in others.

33. Like order.

34. Change my mood a lot.

 35. Am quick to understand things.

36. Don't like to draw attention to myself.

37. Take time out for others.

38. Shirk my duties.

39. Have frequent mood swings.

40. Use difficult words.

41. Don't mind being the center of attention.

42. Feel others' emotions.

43. Follow a schedule.

44. Get irritated easily.

45. Spend time reflecting on things.

46. Am quiet around strangers.

 -80-

47. Make people feel at ease.

48. Am exacting in my work.

49. Often feel blue.

50. Am full of ideas.

 -81-

4.9 Scoring In Big Five Test

When all the questions are answered, the five personality traits are being calculated with

the following formulas, where the number in brackets is the corresponding question and

next, you put the number on the range of 1-5 you previously put in an answer:

Extraversion = 20 + (1) ___ - (6) ___ + (11) ___ - (16) ___ + (21) ___ - (26) ___ +

(31) ___ - (36) ___ + (41) ___ - (46) ___ = _____

Agreeableness = 14 - (2) ___ + (7) ___ - (12) ___ + (17) ___ - (22) ___ + (27) ___ -

(32) ___ + (37) ___ + (42) ___ + (47) ___ = _____

Conscientiousness = 14 + (3) ___ - (8) ___ + (13) ___ - (18) ___ + (23) ___ - (28) ___

+ (33) ___ - (38) ___ + (43) ___ + (48) ___ = _____

Neuroticism = 38 - (4) ___ + (9) ___ - (14) ___ + (19) ___ - (24) ___ - (29) ___ - (34)

___ - (39) ___ - (44) ___ - (49) ___ = _____

Openness = 8 + (5) ___ - (10) ___ + (15) ___ - (20) ___ + (25) ___ - (30) ___ + (35)

___ + (40) ___ + (45) ___ + (50) ___ = _____

 -82-

An important note here is to mention that in any kind of personality test, there is no

actual average value. “Norms” are really misleading and generally should be avoided

because one person’s score could never be a representative value or subset in a

population. The correct way to find the average values for each trait is to find the

average value of each trait on the sample that was used, meaning, the people we

evaluated our recommender.

Here follows the average values of each trait based on the 30 different users we tested

our recommender. Every value below this score is considered a low value and every

value above, a high value.

Extraversion: 3.45

Agreeableness: 3.96

Conscientiousness: 3.46

Neuroticism: 3.128

Openness: 3.86

On the next page we present again some human characteristics based on if the user has

scored high or low on a specific trait.

 -83-

Neuroticism

 Low

High

Stable

Tense

Calm

Anxious

Contented

Nervous

Unemotional

Moody

Worrying

Fearful

Agreeableness

 Low

High

Cold

Sympathetic

Unfriendly Kind

Unking

Appreciative

Cruel

Warm

Thankless Generous

Fault-Finding Trusting

Conscientiousness

 Low

High

Careless

Organized

Irresponsible

Thorough

Forgetfull

Efficient

Frivolous

Responsible

Undependable

Reliable

Slipshot

Precise

Extraversion

 Low

High

Quiet

Sociable

Reversed

Forceful

Shy

Energetic

Silent

Adventurous

Withdrawn

Enthusiastic

Retiring

Outgoing

Openness

Low

High

Narrow interests Imaginative

Simple

Intelligent

Shallow

Original

Unintelligent

Insightful

Artistic

Clever

 -84-

5 DESIGN OF THE 50/50
MOVIE RECOMMENDER

5.1 Overview

The movie recommender we designed is called the 50/50 Movie Recommender system.

As mentioned before, it’s a Movie recommender that takes into account the personality

of the active user. It is based on collaborative filtering techniques and the Knn algorithm

with the addition of the Big Five Personality test, which filters the final

recommendations based upon the user's genre preferences.

5.2 MovieLens Dataset

The dataset we used is the MovieLens 100k database. It’s a stable benchmark dataset,

developed and collected by the GroupLens Research Progject, that includes 100.000

ratings from 1000 users on 1700 movies. It was released in 1998. It’s really important

that all the users in the Database have rated at least 20 movies, which helps the Knn

operate as it makes it easier to find neighbors to the active user.

The MovieLens Database includes the following files that were using in our system:

A. U.data: The dataset with 100.000 rating by 943 users on 1682 movies. All users

and items are numbered consecutively from 1. There is also a timestamp tab

which was removed as it was not needed. On the next table, the head of U.data is

presented:

Table 5.1: U.data Head

 userid itemld rating

0 196 242 3

1 186 302 3

2 22 377 1

3 244 51 2

4 166 346 1

 -85-

B. U.item: Information about the movies. This includes movie id, movie title,

release date, video release date, Imdb URL and 19 fields that represents the

different genres, with 1 indicating that the movie is of that genre. Movies can be

in several genres. We deleted the release date, video release date and Imdb url.

In addition, we deleted some genres so for the recommender to operate better.

Explanation in chapter ().On the next table the head of U.item is presented:

Table 5.2: U.item Head

Item-

ld
title

Act-
ion

Adve-
nture

Ani-
mation

Car-
toon

Com-
edy

Dra-
ma

Film-
Noir

Horror
Rom-
ance

Scl-FI War

0 1
Toy Story
(1995)

0 1 0 0 0 0 0 0 0 0 0

1 2
GoklenEye
(1995)

1 0 0 0 0 0 0 0 0 0 0

2 3
Four
Rooms
(1995)

0 0 0 0 0 0 0 0 0 0 0

3 4
Get SHorty
(1995)

1 0 0 0 0 0 0 0 0 0 0

4 5
Copycat
(1995)

0 0 1 0 0 0 0 0 0 0 0

 -86-

5.3 Extra Information Added

Apart from the MovieLens database, two more important tables were used to help the

operation of our system:

A. 5 factor table: This is a table we created that includes the information

provided on (). We deleted the cult, foreign, independent, tragedy, parody

genres because they are not included in the Movielens dataset. For further

information about this table check 2.4.5.

Table 5.3: Five Factor Table

OPE CON EXT AGT NEU

action 3.87 3.45 3.57 3.58 2.72

adventure 3.91 3.56 3.54 3.68 2.61

animation 4.04 3.22 3.26 3.35 3.02

cartoon 3.95 3.33 3.49 3.57 2.81

comedy 3.88 3.44 3.58 3.6 2.75

drama 3.99 3.43 3.66 3.6 2.86

film-noir 4.34 3.35 3.33 3.37 2.97

horror 3.9 3.38 3.52 3.47 2.91

romance 3.84 3.48 3.62 3.62 2.85

sci-fi 3.99 3.55 3.33 3.57 2.73

war 3.82 3.51 3.49 3.5 2.71

 -87-

B. Most rated movies table: This is a table we created with Microsoft Excel. It

includes the most rated movies from the Movielens Dataset in Descending

order. It is used to help solve the cold start problem be providing some

famous movies for the user to rate at the beginning of the recommendation

process. Here follows the head of the table:

Table 5.4: Most rated movies Table

MOVIE NAME MOVIE ID NUMBER OF RATINGS

Star Wars (1977) 50 583

Contact (1997) 258 509

Fargo (1996) 100 508

Return of the Jedi (1983) 181 507

Liar Liar (1997) 294 485

English Patient. The (1996) 286 481

Scream (1996) 288 478

Toy Story (1995) 1 452

Air Force One (1997) 300 431

Independence Day (ID4) (1996) 121 429

Raiders of the Lost Ark (1981) 174 420

Godfather. The (1972) 127 413

 -88-

5.4 Assumptions

 It’s important to make some assumptions about the data and the recommender so

to avoid technical problems, at least in this research stage. Here are the assumptions we

made:

a) The items set do not change. Meaning that our database remains stable and no

new movies are added.

b) The users set do not change. Meaning the database with the different users and

their different ratings does not change. Even though the new user enters the

system and passed his name, the addition of his record to the user database is

only temporary.

c) There is no browse history. We don't take into account what the user browses,

only what movies he has already rated.

d) Always a fixed number of movies are recommended at the end to the user.

e) The user doesn’t change his personality through time.

5.5 System Architecture

Our movie recommender consists of some different components and operations. Here

follows the basic steps of how it operates:

• Input : Movielens database, 5 factor table, most rated movies table

• Output : Three sets of movie recommendations, one pure knn, one 50% knn 50

% personality, one 20% knn 80% personality

• Steps of Algorithm :

1. Start

2. User enters the system

3. Load Movielens dataset and 5factor and most rated movies tables

4. Active User Movie Rating Function

5. Active User Personality Test Function

6. Present the three different sets of movie recommendations

7. Stop

 -89-

5.6 Main Flow Chart Explanation

On the next page we provide the Main flow chart of our recommender system.

Picture 5.1:Main Flow Chart

 -90-

So the user enters the system with the intention to have some movies recommended to

him. Then we import the movieLens Dataset, and the Top rated movies table and

proceed to the movie rating function.

Then a Movie Rating function is used to solve the cold start problem for the new user, as

the system knows nothing about his movie preferences. Next, the user is asked to fulfill

the big five questionnaire which is what the Big Five Personality Function actually is.

Last function is the Combining Personality with Knn Function, which is the one that

combines the Knn movie recommendations with the personality of the active user. Here

follows some further analysis of each function and their corresponding flow chart.

 -91-

5.7 Movie Rating Function Flow Chart Explanation

On the next page we provide the Movie Rating Function chart of our recommender

system.

Picture 5.2:Movie Rating Function Flow Chart

 -92-

So this function is basically used to solve the cold start problem, meaning that the

system knows nothing about the active user and there needs to be a way for the user to

provide information to the system.

So, first a list of 20 movies is presented to the user. Here we use the MostRatedMovies

table, and we present one movie from this table and one random from the whole dataset

alternately. That way, we avoid providing biased movies to rate and at the same time

manage to suggest some famous and some not so well known movies. An example is

presented on the following table.

Table 5.5:Movies Presented to the User

 -93-

If the user cannot find any movie that he knows on the list, he just enters -1 and a new

list is presented to him, following the same concept, one movie from the

MostRatedMovies table and one random alternately.

This goes on until the user has rated 20 movies, which a pretty good number for the

Collaborative algorithm to work. The system then uses collaborative techniques to find

the K-nearest neighbors of the active user, meaning users that have a similar taste to

him. The pairing is done as we said before, with the help of the Pearson Correlation and

the following formulas.

Corr(x,y)=

Equation 5.1:Pearson Correlation 3

Next step is to predict the ratings the active user will give to all the movies he
hasn’t seen, based on his K- nearest neighbors. The function used for calculating
the predicted rating is the following:

 u ,i u a,uu U
a,i a

u U a,u

r r .w
p r

w






 




Equation 5.2:Predict Rating Formula 2

 -94-

Last, a table with all the predicted ratings, plus the ones he provided at the beginning, is

made. This is the most important list in our system as it’s the basis in the application of

the 50/50 and 80/20 calculations later.

Table 5.6: Predicted Ratings

itemld Rating

1 7,29552

2 2,87429

3 2,87429

4 2,87429

5 2,87429

6 2,87429

7 -2.34085

8 2,87429

9 -1.42448

10 2,87429

 -95-

5.8 Big Five Personality Test Function Flow Chart

Here we provide the Big Five Personality Test function of our recommender system. It's

just a function that presents to the user all the questions from the Personality Test. Then

the system calculates the active user’s big five traits score, based on the method

explained on 4.9.

Picture 5.3:Big Five Test Function

 -96-

5.9 Combining Personality With Knn Flow Chart

Here we provide the Combining Personality With Knn function of our recommender

system. This is a function that we designed and implemented, and it’s the main

contribution of this Dissertation.

Picture 5.4:Combining Personality with Knn Function

 -97-

So, first the 5factor table is loaded which, as we mentioned, is a table that includes the

information provided on ().

Table 2.7: Correlation between Genre and Big Five Traits

What we do next is we take the score of the Big Five Traits of the active user, which we

calculated previously on the Big Five Personality Test Function. Let’s say that the

active user has the following results:

Openness: 3.87

Conscientiousness: 3.56

Extraversion: 3.53

Agreeableness: 4.7

Neuroticism: 2.89

 -98-

Based on these results, we can check the 5factor table and see at first sight which genres

the active user prefers based on his personality.

Table 5.8:Genre Preferences of User

 -99-

What we do next to make the algorithm more accurate is to take the active user’s trait

scores and the scores for each genre from the 5factor table and subtract them. Here

follows an example on the Action and the Adventure genre

In the following table you can see the big five scoring for the active user and the scoring

for the action and adventure genre.

Table 5.9: Calculating 50/50 1

USER PERSONALITY TRAITS

 ope con ext agr neu

active user 3,60 3.9 2.3 4,70 3,30

GENRES

 ope con ext agr neu

action 3,87 3.45 3.57 3,58 2,72

adventure 3,91 3.56 3.54 3,68 2,61

We now subtract each trait of the active user from the corresponding trait of all the

different genres. We take the absolute value of the result because our main goal is to

add all the final trait scores and calculate a distance metric. The higher the value of this

distance metric for the user and a specific genre, the less he likes that genre. Here in

our example with only the action and adventure genre in mind, we can say that our user

has a slight preference towards the adventure genre as he has a lower score, meaning

that his big five scores are closer to the scores of the adventure genre.

Table 5.10: Calculating 50/50 2

ope con ext agr neu

PERSONALITY
SCORE

action |3.6-3.87| |3.9-3.45| |2.3-3.57| |4.7-3.58| |3.3-2.721 3,69

adventure |3.6-3.91| |3.9-3.56| |2.3-3.54| |4.7-3.68| |3.3-2.61| 3,6

 -100-

We do the same calculations for all the genres and then create a table that includes these

results in an ascending order.

Table 5.11: Final 50/50 genre preferences

sci-fi 3,47

romance 3,51

war 3,59

adventure 3,6

horror 3,66

comedy 3,67

action 3,69

animatior 3,71

cartoon 3,73

drama 3,76

film-noir 3,98

These are the genre preferences of the active user based on his personality.

Next step is to rearrange the Knn Movie List based on these genre preferences. We will

explain this with an example.

Let’s assume that the Knn algorithm predicted that the active user will provide a rating

of 4 on Star Wars and a rating of again a 4 on Psycho. Star wars is a sci-fi movie, and

Psycho is a Horror movie. What our algorithm does, is to go and find which genre is

each movie on the knn list and then make some calculations and provide the 50/50 and

80/20 lists.

So for the 50/50 way, our recommender takes the predicted rating of the Star Wars

movie and divides it by 2. Then, assuming that Star Wars is only a Sci-Fi movie, it also

takes the value of the sci-fi genre from the previous table and divides it with 2.

What this does, is that by diving by 2, we imply a 50 % to the Knn rating and a 50 % to

the personality. If we add those two values, we get a new pseudo rating for the Star

Wars movie, which is 3.735.

By applying the same concept to the Psycho movie, we can see that the new pseudo

rating for the psycho movie is 3.83. These pseudo ratings are now nothing more than a

distance from zero and again, the higher the value, the less you will like this movie.

 -101-

So, if we only had the Knn suggestions, Psycho and Star Wars would be equally

presented to the user as they both have the same predicted rating. However, with the

addition of the personality factor, Star wars will be suggested first and then Psycho

Same thing with the 80/20 recommender, with the only difference that we are not

dividing each value by 2, but we multiply the Knn predicted rating with 0.2 and the

Personality genre rating with 0.8. That way, we put more emphasis on the personality

than the Knn, because now personality is 80% and Knn 20%

If a movie belongs in more than one genre, we do the following:

Let’s assume that the Knn suggests GoldenEye with a predicted rating of 4, which is

both an Action and an Adventure movie. First, again we divide the Knn score by 2.

Then, based on Table 5.3: Five Factor Table, we add 3.6 (adventure preference value)

and 3.69 (action preference value) it by the number of genres this movies belongs to.

So for the 50/50 recommender we have:

3 6 3 69 4
2

2 2

. .
/

 
 

 
 = 3.822

Equation 5.3: 50/50 example equation

which is the final predicted rating for Golden Eye.

 -102-

So, the last step is to recalculate the new distance values for each movie in the knn list

and make it in ascending order, as now, the closer to 0 the better the recommendation.

We do this for both the 50/50 and the 80/20 methods and print the three different lists to

the user. Here follows an example:

Here are the genre preferences of the user:

Table 5.12: 50/50 User genre Preferences

cartoon 2,38

sci-fi 2,42

drama 2,43

horror 2,43

action 2,45

adventure 2,52

comedy 2,57

animatior 2,59

romance 2,64

war 2,74

film-noir 3.02

 -103-

Here is the Knn movie list:

The 50/50 movie list:

The 80/20 movie list

 -104-

We can clearly see that the 80/20 list is really close to the personality genre preferences

of the user, but the most well balanced is the 50/50 one, as we also found out during our

evaluation of the recommender.

On the 50/50 list, we see the Sci-fi movies rising in the rankings and even horror

movies like Alien and Psycho appeared on the list, where previously on the Knn list

they weren’t included. This is because the user has a preference on Sci-fi and Horror

movies based on Table 5.12: 50/50 User genre Preferences.

On the 80/20 list, we see that out of nowhere, a cartoon movie is suggested first,

because cartoon is the favorite genre of the active user. We also see the appearance of

more cartoon movies like Beauty and the Beast, and Wallace & Gromit: The Best of

Aardman Animation.

 -105-

 -106-

6 IMPLEMENTATION IN
PYTHON

6.1 Functions

exit_if_file_is_not_found(filename) :

This is a function that checks if a file being accessed exists, and closes the program if it

doesn't. It is used each time a file is loaded.

exit_if_data_are_not_found() :

Calls the exit_if_file_is_not_found function for all needed files.

get_user_movie_id() :

This function gets, checks and validates the user input for the IDs of movies he rates.

While the input is not valid, the function asks for new input in a loop. If the input is

valid, it returns it.

get_user_rating(TAINIA) :

This function gets, checks and validates the user input for the rating of movies he rates.

While the input is not valid, the function asks for new input in a loop. If the input is

valid, it returns it.

newUser(ratingsmatrix) :

This function creates a new user and prompts him/her to rate 20 movies. It reads movies

from a file that contains the movies sorted by popularity (number of votes) and then

presents to the user a list of 20 movies each time: 10 movies from the top of the list and

10 random choices. The user can pick a movie by ID and rate it (using

get_user_movie_id and get_user_rating functions) or refresh the list.

myBestMovies(me,N) :

This function retrieves the N best rated movies for a given user.

correlation(u,v) :

Finds the Pearson correlation between two users.

 -107-

userPairSimilarity(user1, user2) :

Returns the similarity between two users, by checking their common movies and using

the above correlation function.

nearestNeighbourPredictions(user, K) :

This function calls the userPairSimilarity function for the active user and all other users.

Then it uses the K most similar users and their ratings to predict a rating that the active

user would give for all the movies in our dataset. It returns an array that contains all

movies and their predicted rating.

finalNRecommendations(user, N) :

This function takes the predicted ratings array calling the above function, sorts it in

descending order (best rating to worst) and returns the N top ones, after droping all

movies already rated by the active user.

RatingsNormalized(user) :

This function normalizes the ratings in the predicted ratings array in the range (0-5).

knnPersonality5050(genreSum, myItemDatabase, movieNum, genreNum,

normalizedTable):

and

knnPersonality8020(genreSum, myItemDatabase, movieNum, genreNum,

normalizedTable):

These functions take the normalized KNN ratings from RatingsNormalized and alter

them based on the personality of the user, equally weighting KNN and personality in the

first case and favoring the KNN in the second case. They return a new normalized table

with revised ratings.

finalNRecommendationsPersonality(tab, user, N) :

Takes the new personality-based normalized rating tables and returns the N top movies.

 -108-

6.2 Program Flow, Details And Explanation

Lines 8-9:

At first, the program gets its path name and directory to use for locating all the

neccessary files regardless of the machine it's being run on.

Lines 12-16:

The exit_if_file_is_not_found function is defined.

Lines 18-26:

The program then checks on what OS the program is run (by checking the os.name

attribute) and sets a descriptor variable to "/" in the case of Posix, or "\\" otherwise, to

ensure that the program will run on different platforms:

Lines 28-32:

Here the paths to the data needed by the program are defined, concatinating the

directory string retrieved before (line 9), the descriptor variable ('\\' or '/' depending on

the OS) and the file name. The files defined are:

movieLensFile: The u.data file from the movieLens database, containing the ratings of

all users for all movies they have rated.

movieLensItemFile: The u.item file from the movieLens database, containing

information about the movies such as name, actors and genres.

FiveFactorFile:

mostRatedFile: A file containing all movies sorted by the number of votes (most to

least).

 -109-

Lines 34-39:

Next, the program checks if the files defined above exist by calling the

exit_if_file_is_not_found function for each file. If a file does not exist, the function

aborts the program.

Lines 42-73:

If all needed files exist, the program defines the get_user_movie_id function. This

function is used inside the newUser function that gets defined later, and gets/checks the

user input for the movie id he wants to rate, inside a loop. If the input is valid the loop

breaks and the function returns it, but it keeps asking for new input if:

a)The input has a '0' prefix (leads to failure if left unchecked)

b)The input is outside the [0,1682] range (valid movie IDs) and is not -1 (valid input - it

is used to refresh the list)

c)The input is not an integer

 -110-

Lines 75-107:

In the next lines, the function get_user_rating is defined. It asks the user to rate the

selected movie and takes the name of the movie as an argument (in order to print it

when asking for a rating). Like the previous function, it asks for input in a loop, which

breaks only if the input is valid, otherwise it keeps asking. The input is considered not

valid if:

a)The input has a '0' prefix (similar case to the one in the getUserRating function)

b)The input is not an integer:

c)The input is outside the [1,5] range (valid rating values):

 If the input is valid, it is returned.

Lines 109-255:

Next, the function newUser is defined. This function initiates a loop which repeatedly

asks the user to rate movies from a list, until the user has rated 20 movies. The user can

choose a movie from the list (by ID) to rate, or refresh the list by giving -1 as input.

After informing the user on what he needs to do, the function loads a pandas DataFrame

(myRatedDatabese) containing all the movies available in descending order (most rated

to least rated). It then defines a variable to be used as a counter for the number of

movies rated (cnt) and enters a loop that is going to be terminated only when the

counter is equal to 20. The movies are presented in the following fashion:

 -111-

-Five integer variables are created, ii (used to mark the start of the section of the

myRatedDatabase movies that the program is printing at any moment), jj (used to mark

the end of it), icount (used to represent the row of the 20-row dataframe that the movie

is going to be put in), jcount (used to represent the column of the dataframe we are

handling at any moment - there are 2 columns, one for the movie ID and one for the

movie name) and cnt (used to count the number of rated movies). jj is always equal to

ii+10.

-A new dataframe, named movList, with space for 20 elements and two columns

(MOVIE_NAME and MOVIE_ID) is created, to hold the 20 movies that will appear on

screen each time.

-The program enters a loop that ends only when cnt is larger than 20 (the user has rated

20 movies).

-In every iteration, the program puts movies in the [ii,jj] range of the myRatedDatabase

dataframe in the even numbered elements of the movList dataframe (1,3,5...17,19).

-For the odd numbered elements of movList (2,4,6....18,20), random movies from the

[ii,1682] range are used:

-When the movLIst is full, it is prented on screen and the user is asked to either select a

movie id to rate or type -1 to refresh the list.

-User input is taken with the use of the get_user_movie_id function. Then, the program

searched in movList for the selected movie id, and if it is not found it searches in the

complete list of movies. If the movie id exists, the program asks the user to rate it with

the use of the get_user_rating function.

 -112-

Lines 229-234:

The myBestMovies function is defined. It simply sorts the movies rated by the user

from highest to lowest rating and returns them.

Lines 238-244:

The correlation function, identical to the scipy function with the same name, meassures

the Pearson correlation between two elements (users).

Lines 247-260:

The userPairSimilarity function is defined. It takes two user vectors (vectors that

contain all movies and the ratings of a user for the movies this user has rated, or NaN if

he hasn't rated a movie) representing two users, and returns the similarity between them.

First, the two vectors are normalized using the mean rating for each vector.

Then it finds the common movies between the two users. If they have rated no common

movies, the function returns 0; otherwise, it collects the rating of each user for each of

the common movies and calls the correlation function to return the correlation between

them:

 -113-

Lines 265-283:

Next is the definition of the nearestNeighbourPredictions function. It takes two

arguments, the userID of the active user and integer K, representing the number of

neighbours we want to take into account.

First, a dataframe named similarities with a single column (labeled 'similarity') is

created, which the program fills with the similarity of the active user with every other

user in the database, calling the userPairSimilarity function for the active user and a

different other user each time:

When the similarities dataframe is finished, it is sorted in descending order and only the

first K elements ar kept (the similarities of the K most similar to the active user users)

and saved in a dataframe named nearestNeighbours.

Lines 287-307:

In the next lines, the function finalRecomendations is defined. This is the function that

will return the final results of the KNN predictions. It takes four arguements: The active

user ID, the number N of the movies to recomend, the total number of movies

(movieNum) and the total number of genres (genreNum).

-First, the function calls the nearestNeighbourPredictions function to aquire a dataframe

named predictRating containing the predicted rating of the active user based on his/her

nearest neighbours.

-Then it makes a list containing the IDs of the movies the active user has already rated,

named moviesRated.

 -114-

-Next it creates an empty list named noGenreList, and fills it with all the movies from

the myItemDatabase dataframe that have no genre, by iterating through all the columns

of each row in the myItemDatabase dataframe and counting the ones in the genre

section (each genre for each movie has a value of one, if that movie belongs to that

genre, or zero if it doesn't).

-The function then drops from the recomendation dataframe (predictRating) all movies

contained in the moviesRated and noGenreList lists, meaning it removes all movies that

have no genre or are already rated by the user.

-Then the predictRating dataframe is sorted in descending order (highest prediction to

lowest) and only the N first elements are kept. Using the movie IDs of those N

elements, their titles are retrieved from the myItemDatabase dataframe and those titles

are returned as a list.

Lines 310-327:

Next a function named RatingNormalized is defined. This function takes the result of

the nearestNeighbourPredictions function and normalizes their values, getting all ratings

in the [1-5] range. Because the lowest predicted rating can also take negative values,

this is done in the following manner:

 -115-

-First the function gets the lowest and highest ratings on the predictRating dataframe

(containing all movies with their predicted ratings) and stores them into a 'maximum'

and a 'minimum' variables.

-Next, a variable b is defined, which is equal to 0 if the minimum value is not negative,

and (-minimum) if it is negative. If the minimum value is negative, the function also

changes the minimum variable to 0 and the maximum variable to

maximum+|minimum|.

-This variable b is then added to each predicted rating in the predictRating dataframe, to

bring all values above 0 (if they already were, b is equal to 0 so this has no effect). All

ratings are then recalculated in the range [1,5] and then they are reversed so that the

closer they are to zero the better the rating is considered.

-The revised predictRating dataframe is finally returned.

In line 383, the definitions end and normal program flow is continued. The

exit_if_data_are_not_found function is called, and if the files needed exist, the program

goes on and loads them into dataframes:

 -116-

An active userID is also declared as 944 (this is the userID used for any new user, since

userIDs 1-943 already exist) and a neighbour's variable, representing the number of

nearest neighbours, we want the algorithm to take into account as 50 (lines 396-397).

Lines 399-1108:

Next comes the personality test that will determine the personality profile of the new

user. Five variables, each representing a Big-Five personality trait, are declared:

After printing some basic instructions (lines 405-412), the program asks the user to

evaluate 50 questions giving a rating in the range [1,5], with 1 meaning 'I completely

dissagree' and 5 'I completely agree'. First, the question is printed on screen, and then

the user input is handles in a loop, so that the user is repeatedly asked for input while

the input is not valid:

Each question adds or subtracts the given user rating from one of the variables

representing each of the personality traits (e for extraversion in the above example).

This goes on until all 50 questions are rated by the user. Then using the proccesses

explained in the theory section of this study, the final values for the five personality

traits are deduced (lines 1086 - 1091):

 -117-

Next, the program prompts the user to wait and enters its final stage.

First, the 'myFiveFactorDatabase' DataFrame is created by reading the file variable

'FiveFactorFile' defined earlier:

It contains the values of the Big Five traits expected for each of the genres in the movies

database (the mean trait value for each genre). It contains eleven rows (one for each

genre) and five columns (one for each trait), excluding the first column which contains

the genres names.

After the DataFrame is created, the values deduced for the current user for each trait are

subtracted from the values in the respective columns (opennes_final from all rows in the

openness column, agreeableness_final from all rows in the agreeableness column and so

on), and right after that the absolute value of each trait is taken so that no negative

values remain. That way, the closer the user is to a specific trait value, the closer to zero

the result will be:

Next, the program sums all the values for each row (each row represents a genre) and

makes a new DataFrame, named "genreSum" containing the genre names and that final

value for each genre. It's now obvious that the closer to zero the result is, the higher the

chances the current user likes the given genre, according to the theory.

 -118-

Now the program calls the RatingsNormalized function and stores the result in the

"NormalizedTable" DataFrame. Then it calls the knnPersonality5050 and the

knnPersonality5050 functions, giving the "RatingsNormalized" and the "genreSum"

DataFrames as arguements:

Finally, the program computes and prints the final results for all three methods:

 -119-

 -120-

7 EVALUATION AND FUTURE
WORK

7.1 Evaluation

For the evaluation part, we sent a modified version of the recommender system to 30

different people. Out of these 30 people, 10 were female and 20 were male, aged

between 18 and 65.

The only difference between the modified version and the final version of the

recommender is that in the end of the program, in the modified version, we didn’t show

which result is the Knn, the 50/50 and the 80/20. The users were presented with three

different sets of movies, and they had to pick between those 3 in order of preference.

The user had to pick his favourite set based on both what movies were included in the

set, but also the order of the movies in each set.

The users replied via email, in the style, of “ I firstly, Prefer set A, then set B and last

set C." We then created an Excel sheet so to count the final score for each method. The

first preference of each user was awarded 3 points, the second two points and the last

one 1 point. You can see the results in the next table.

 -121-

Table 7.1:50/50 Evaluation Table

gender 50 50 knn 80 20 age

f 3 2 1 50

m 2 1 3 26

f 2 3 1 23

m 1 3 2 23

m 2 3 2 29

m 3 2 1 33

m 2 3 1 40

m 3 2 3 30

m 2 3 1 20

f 3 1 2 30

m 3 2 3 60

f 3 1 2 24

f 1 3 2 28

f 2 2 3 18

f 3 2 1 21

m 3 2 2 19

f 2 3 3 30

m 3 3 2 34

m 3 3 2 34

m 3 1 2 32

m 3 3 2 28

m 2 3 1 23

f 3 1 2 30

m 2 3 1 30

m 2 3 1 40

m 1 2 3 35

m 3 1 2 25

m 2 1 3 50

m 3 2 1 30

f 2 3 1 36

 -122-

There are some cases were, for example, the 50/50 recommender and the Knn presented

exactly the same movies with the exact order. This is why you might see the same

points awarded for the two different methods.

Of course, our main goal was to prove that most people prefer the 50/50 recommender

over the Knn. The 80/20 was an exaggeration and was just provided as an option so that

we have an algorithm that uses mostly the personality, as the 80/20 is 80 percent

personality and 20 percent Knn.

The results can be seen on the following table:

Table 7.2: 50/50 Evaluation Table 2

50/50 knn 80/20

SUM 72 67 56

% 36.41026 34.35897 29.23077

We can see that there is a small preference towards the 50/50 recommender but if we

eliminate the 80/20 recommender and recalculate the results, we can notice an

improvement of 3.62 % which is a significant difference.

Table 7.3: 50/50 Evaluation Table 3

50/50 knn

SUM 72 67

% 52.17391 48.55072

 -123-

7.2 Conclusions

The general conclusion of this Dissertation project is that indeed personality plays a

significant part in recommender systems. We believe that as computer technology

progresses, human personality and psychology must be further integrated and applied

and with this project, we made a point on how important personalization can be in the

modern market. Our 50/50 recommender and the percentage of improvement that it

made to the Knn algorithm, even though it may seem as a small percentage, it’s actually

pretty significant, and if you translate that into market value and sales, it makes a big

difference.

For some, answering a personality test might be a big effort and something not needed,

but you have to make sure that they understand that this test will improve their

experience and their recommendations. Personally, we believe that it’s worth the effort,

even more because it’s something you have to do only once and the outcome will be

significant even in the future.

7.3 Improvements And Future Work

A first improvement would be to include more metadata in the future. The only

metadata we had now was what genre each movie was. Of course, this is something that

the current MovieLens database purely provided, but we can scrap metadata from

IMDB and incorporate more content based techniques.

Furthermore, the movie database is again pretty old, and we need to include more

modern movies. This was a common complain among young people who evaluated the

recommender, as they haven’t watched most of the movies included, even though they

are relatively famous.

Another addition would be to be able to treat a new movie entering the system and not

only a new user.

The MovieLens database includes also the gender, age and occupation of each user. In

the future, all of this data can be incorporated so to cluster the users and be able to make

more accurate predictions. Clustering should be tested even though in the past it didn’t

provide the best results.

 -124-

Feedback from the user was something we definitely wanted to incorporate but didn’t

have the time to. User must provide feedback for the recommendations and rate the

recommendations. Then we will have three important factors to worry about, his

personality, his movie preferences and his reaction to the recommendations. Moreover,

the user should be able to provide feedback for different aspects of the movie like

acting, plot, movie length, director and so on. Nowadays, recommenders assume that if

you like a movie, you like anything about the movie, the director, the actors, etc. So, if

you provide specific feedback as stated above, the recommendations will be more

accurate.

In the beginning of this project, we wanted to incorporate a group option to the

recommender meaning that the recommender system would combine two or more

different users so to make common recommendations. This group option would

consider both user’s personalities and movie preferences and find the optimal list of

movies for them to watch. A further idea was also to incorporate metadata like place,

date and time in conjunction with the companion option so that you can get a more

specific recommendation. This will have to be done in an N-dimensional model like the

one provided below.

Picture 7.1: N-dimensional model

 -125-

Last but not least, a more advanced personality test will be used, even a custom one. We

are currently looking at other options and trying to minimize the number of questions

and effort the user has to make to portray his personality into our movie recommender.

 -126-

BIBLIOGRAPHY AND
REFERENCES

Bibliography

[1] Robin Burke, "Hybrid Recommender Systems:Survey and Experiments".

[2] Alexander Tuzhilin Gediminas Adomavicius, "Toward the Next Generation of

Recommender Systems: A Survey of the State-of-the-Art and Possible

Extensions," IEEE TRANSACTIONS ON KNOWLEDGE AND DATA

ENGINEERING, VOL. 17, NO. 6, Jun 2005.

[3] John Riedl, Joseph A. Konstan Sean M. McNee, "Making Recommendations

Better: An Analytic Model for Human-Recommender Interaction," CHI, April

2006.

[4] Ignacio Fernández-Tobías, Alejandro Bellogín Iván Cantador, "Relating

Personality Types with User Preferences in Multiple Entertainment Domains".

[5] Suhaas Prasad. Using Social Networks to Improve Movie Rating Predictions.

[6] Andy Mai Mathangi Venkatesan, "Recommendation of TV shows and Movies

based on Facebook data".

[7] Mohammad-Hossein Nadimi-Shahraki and Mozhde Bahadorpour, "Cold-start

Problem in Collaborative Recommender Systems: Efficient Methods Based on

Ask-to-rate Technique".

[8] Istvan Albert, Dan Cosley, Shyong K. Lam, Sean M. McNee, Joseph A. Konstan,

John Riedl Al Mamunur Rashid, "Getting to Know You: Learning New User

Preferences in Recommender Systems".

[9] George Karypis, and John Riedl Al Mamunur Rashid, "Learning Preferences of

New Users in Recommender Systems: An Information Theoretic Approach".

[10] Fan Min, Xu He, Yuan-Yuan Xu1 Heng-Ru Zhang, "A Hybrid Recommender

System Based on User-Recommender Interaction," Hindawi Publishing

Corporation Mathematical Problems in Engineering, p. Article ID 145636, 2015.

 -127-

[11] Saranya Maneeroj Nutcha Rattanajitbanjong, "Multi criteria pseudo rating and

multidimensional user profile for movie recommender system," in 2nd IEEE

International Conference, 2009.

[12] Eric Norris Jennifer Golbeck, "Personality, movie preferences and

recommendations," in Proceedings of the 2013 IEEE/ACM International

Conference on Advances in Social Networks Analysis and Mining, 2013.

[13] Vladimir-Nicolae Dinu, Catalina Preda, Matei Macri Costin-Gabriel Chiru, "Movie

Recommender System Using the User's Psychological Profile," IEEE, pp. 978-1-

4673-8200-7/15, 2015.

[14] personality-testing.info, "The Big Five Personality Test," ipip.ori.org,.

[15] Alexander Felfernig and Mehmet H. Göker Robin Burke, "Recommender Systems:

An Overviw," AI MAGAZINE, Fall 2015.

[16] Barbara Cimpa Jochen Nessel, "The MovieOracle - Content Based Movie

Recommendations," ACM International Conferences on Web Intelligence and

Intelligent Agent Technology, 2011.

[17] Matus Medob, Chi Ho Yeungb, Yi-Cheng Zhanga, Zi-Ke Zhanga Linyuan Lua,

"Recommender Systems," physics.soc-ph, Feb 2012.

[18] Arkadiusz Paterek, "Predicting movie ratings and recommender systems," Jun

2012.

[19] Ghadeer Shahatah, Lamia Albdulkarim Dhoha Almazro, "A Survey Paper on

Recommender Systems.," cs.IR, Dec 2010.

[20] Stephan Spiegel, A Hybrid Approach to Recommender Systems.

[21] Xiangrui Meng, Chao Liu, Qiang Yang Nathan Liu. Wisdom of the Better Few:

Cold Start Recommendation via Representative based Rating Elicitation.

[22] Gaurangi Tilak, Nan Li Eyrun A. Eyjolfsdottir, "MovieGEN: A Movie

Recommendation System," Santa Barbara,.

[23] Emrah Ekmekciler Hasan Ogul, Two-Way Collaborative Filtering on Semantically

Enhanced Movie Ratings, Jun 25-28, 2012.

[24] A. M. Jehad Sarkar, Young-Koo Lee Sajal Haider, Movie Recommendation

 -128-

System Based on Movie Swarm, 2012.

[25] Sandeep Matharia, Dr. C.N.S. Mmthy Dharmendra Patliak, "ORBIT: HYBRID

MOVIE RECOMMENDATION ENGINE," International Conference on

Emerging Trends in Computing, Communication and Nanotechnology, 2013.

[26] Maria Augusta Silveira Netto Nunes. (2008, Dec) Recommender Systems based on

Personality Traits. [Online]. https://tel.archives-ouvertes.fr/tel-00348370

[27] Μ. KUNAVER, Μ. POGACNIK, A. KOSIR AND J. F. TASIC Pozrl T.,

"IMPROVING HUMAN-COMPUTER INTERACTION IN PERSONALIZED TV

RECOMMENDER," Transactions of Electrical Engineering, pp. 19-36, Jun 2012.

[28] Joseph A. Konstan Maxwell F. Harper, "The MovieLens Datasets: History and

Context," ACM Digital Library, Dec 2015.

https://tel.archives-ouvertes.fr/tel-00348370

 -129-

Pictures

Picture 2.1: K number .. 14

Picture 2.2:The recommender Behavior ... 26

Picture 3.1: Knn Operation 1 .. 50

Picture 3.2: Knn Operation 2 .. 51

Picture 3.3: Knn Operation 3 .. 52

Picture 3.4: Knn Operation 4 .. 52

Picture 3.5: Knn Operation 5 .. 53

Picture 3.6: Knn Operation 6 .. 53

Picture 3.7: Pearson Correlation Operation 1.. 55

Picture 3.8: Pearson Correlation Operation 2.. 56

Picture 3.9: Pearson Correlation Operation 3.. 57

Picture 3.10: Pearson Correlation Operation 4 ... 58

Picture 3.11: Recommender System Operation 1 .. 61

Picture 3.12: Recommender System Operation 2 .. 62

Picture 3.13: Recommender System Operation 3 .. 63

 Picture 3.14: Recommender System Operation 4 ... 64

Picture 4.1 Human-Movie Recommender Interaction .. 69

Picture 5.1:Main Flow Chart ... 89

Picture 5.2:Movie Rating Function Flow Chart .. 91

Picture 5.3:Big Five Test Function .. 95

Picture 5.4:Combining Personality with Knn Function ... 96

Picture 7.1: N-dimensional model.. 124

 -130-

Equations

Equation 2.1: Social Media Friendship Similarity .. 13

Equation 2.2: Pearson Correlation 1 ... 16

Equation 2.3:Aggregation Function ... 17

Equation 2.4: Entropy .. 19

Equation 2.5: Movie Recommendation Formula ... 37

Equation 3.1: Pearson Correlation 2 ... 59

Equation 3.2:Predict Rating Formula 1 ... 59

Equation 5.1:Pearson Correlation 3 .. 93

Equation 5.2:Predict Rating Formula 2 ... 93

Equation 5.3: 50/50 example equation ... 101

 -131-

Tables

Table 2.1: Method Scoring.. 18

Table 2.2: Pillars to HRI .. 31

Table 2.3: Results .. 33

Table 2.4:Movies/Genres .. 35

Table 2.5: User Profile and Genre Preferences .. 36

Table 2.6: Correlation between Genre and Big Five Traits 40

Table 2.7:Apriori Rules .. 41

Table 2.8:Similarities ... 42

Table 3.1: Rating Matrix example .. 45

Table 3.2: Computations 1.. 65

Table 3.3: Computations 2.. 65

Table 3.4: Computations 3.. 66

Table 3.5: Computations 4.. 66

Table 3.6: Computations 5.. 67

Table 3.7: Computations 6.. 67

Table 4.1: Connecting Traits with Human Characteristics 77

Table 5.1: U.data Head ... 84

Table 5.2: U.item Head ... 85

Table 5.3: Five Factor Table .. 86

Table 5.4: Most rated movies Table .. 87

Table 5.5:Movies Presented to the User .. 92

Table 5.6: Predicted Ratings .. 94

Table 2.7: Correlation between Genre and Big Five Traits 97

Table 5.8:Genre Preferences of User ... 98

Table 5.9: Calculating 50/50 1 ... 99

Table 5.10: Calculating 50/50 2 ... 99

Table 5.11: Final 50/50 genre preferences .. 100

Table 5.12: 50/50 User genre Preferences .. 102

Table 7.1:50/50 Evaluation Table .. 121

Table 7.2: 50/50 Evaluation Table 2 ... 122

Table 7.3: 50/50 Evaluation Table 3 ... 122

 -132-

Script

1 import sys, os

2 import numpy as np

3 import pandas as pd

4 from numpy import linalg as LA

5 from random import randint

6 from scipy.sparse.csgraph import _validation

7

8 pathname = os.path.dirname(sys.argv[0])

9 directory = os.path.abspath(pathname)

10

11

12 # If you cannot find the given 'filename', then exit (1)

13 def exit_if_file_is_not_found(filename):

14 if not os.path.exists(filename):

15 print("Required data file is missing: {0}

".format(filename))

16 sys.exit(1)

17

18 # Make it cross-platform (Windows + Linux)

19 if os.name == 'posix':

20 descriptor = '/'

21 def clear_screen():

22 os.system('clear')

23 else:

24 descriptor = '\\'

25 def clear_screen():

26 os.system('cls')

27

28 # Define the required data

29 movieLensFile = directory + descriptor + 'u.data'

30 movieLensItemFile = directory + descriptor + 'u.item'

31 FiveFactorFile= directory + descriptor + '5factortable.csv'

32 mostRatedFile = directory + descriptor + 'mostratedmovies.csv'

33

34 # Test requirements

35 def exit_if_data_are_not_found():

36 exit_if_file_is_not_found(movieLensFile)

37 exit_if_file_is_not_found(FiveFactorFile)

38 exit_if_file_is_not_found(movieLensItemFile)

39 exit_if_file_is_not_found(movieLensFile)

40

41

42 def get_user_movie_id():

43 q = 'Put the movie ID of the movie you want to rate, or -1 to

refresh list:'

44 # Fix the '0{1,2,3,4,5,6,7,8,9}' bug

45 while True:

46 choice = raw_input(q + '\n')

47 if choice == '01' or \

48 choice == '02' or \

49 choice == '03' or \

50 choice == '04' or \

51 choice == '05' or \

52 choice == '06' or \

53 choice == '07' or \

54 choice == '08' or \

55 choice == '09':

56 print 'Wrong Movie ID. Please do not use 0 prefix!

Try again ...'

 -133-

57 else:

58 # We are not affected from the bug

59 try:

60 choice = int(choice) # Try to convert string to

integer

61 except ValueError:

62 # If it fails, ask the user again

63 print "Wrong Movie ID. This is not a number.

Please try again ..."

64 continue

65

66 # If the conversion to integer has been succedded,

check for its value

67 if choice < -1 or choice > 1682 or choice == 0:

68 # Not acceptable integer value

69 print 'Wrong Movie ID. Please try again ...'

70 continue

71 # It's an acceptable integer value

72 break # Break the loop

73 return choice

74

75 def get_user_rating(TAINIA):

76 movie = str(TAINIA)

77 q = "How much would you rate '" + movie + "' ?"

78 # Fix the '0{1,2,3,4,5,6,7,8,9}' bug

79 while True:

80 choice = raw_input(q + '\n')

81 if choice == '01' or \

82 choice == '02' or \

83 choice == '03' or \

84 choice == '04' or \

85 choice == '05' or \

86 choice == '06' or \

87 choice == '07' or \

88 choice == '08' or \

89 choice == '09':

90 print 'Wrong Rating. Please do not use 0 prefix. Try

again ...'

91 else:

92 # We are not affected from the bug

93 try:

94 choice = int(choice) # Try to convert string to

integer

95 except ValueError:

96 # If it fails, ask the user again

97 print "Wrong Rating. This is not a number. Please

try again ..."

98 continue

99

100 # If the conversion to integer has been succedded,

check for its value

101 if choice < 1 or choice > 5:

102 # Not acceptable integer value

103 print 'Wrong Rating. Please insert a value

between [1-5]:'

104 continue

105 # It's an acceptable integer value

106 break # Break the loop

107 return choice

108

109 def newUser(ratingsmatrix):

 -134-

110 userID = 944

111 print 'Welcome!\n'

112 print 'We will present you a list of movies for rating.

\nPlease enter the ID of the movie you want to rate and press

Enter.\nThen put the corresponding rating (integer value in the range

1-5), with 1 being bad and 5 being excellent'

113 print '\n\nPress Enter to continue . . .'

114 useless = (raw_input())

115 print '\n\n'

116 myRatedDatabase = pd.read_csv(mostRatedFile, sep=",",

header=None, names=['MOVIE_NAME', 'MOVIE_ID'], usecols=[0, 1])

117 print '\n\nMOVIE LIST\n\n'

118 ii = -9

119 jj = 1

120 cnt = 1

121 movlist = pd.DataFrame(index=range(0, 21, 1),

columns=['MOVIE_NAME', 'MOVIE_ID'])

122 while cnt <= 20:

123 clear_screen()

124 print "MOVIE = " + str(cnt) + "/ 20"

125 print "--

---"

126 icount = 0

127 jcount = 0

128 ii += 10

129 jj += 10

130 movlist.loc[0].loc['MOVIE_NAME'] = ' '

131 movlist.loc[0].loc['MOVIE_ID'] = ' '

132

133 # Refresh the movie list with [21 x 2] -- print begins

from row[1] and ends at row [20]

134 # ---

135 for i in range(ii, jj):

136

137 # row[1,3,5,7,9] are **not** random

138 icount += 1

139 movlist.loc[icount].loc['MOVIE_NAME'] =

myRatedDatabase.iloc[i, 0]

140 jcount += 1

141 movlist.loc[icount].loc['MOVIE_ID'] =

myRatedDatabase.iloc[i, 1]

142 jcount -= 1

143

144 # row[2,4,6,8,10] are random

145 icount += 1

146 ranc = randint(jj, 1682)

147 movlist.loc[icount].loc['MOVIE_NAME'] =

myRatedDatabase.iloc[ranc, 0]

148 jcount += 1

149 movlist.loc[icount].loc['MOVIE_ID'] =

myRatedDatabase.iloc[ranc, 1]

150 jcount -= 1

151

152 # Print to screen

153 print '\t\t', movlist.to_string(index = False,

header=False)

154

155

156

 -135-

157 # User input: Ask the user either to pick a Movie or

refresh the list

158 # ---

159 choice = get_user_movie_id()

160 if choice == -1:

161 # Redesign the movielist dataframe (+10 new movies)

162 continue

163

164

165

166 # Find the name of the movie based on the User input

167 # ---

168 found = False

169 for row in enumerate(movlist.values):

170 MOVIE_INDEX = row[0]

171 MOVIE_NAME = row[1][0]

172 MOVIE_ID = row[1][1]

173 if (MOVIE_INDEX == 0):

174 # The first row is always empty, please SKIP it

175 continue

176 if choice == int(MOVIE_ID):

177 TAINIA = MOVIE_NAME

178 found = True

179 break

180 elif MOVIE_INDEX >= 1 and MOVIE_INDEX <=20:

181 # Search withing the 20 Listed movies atm

182 continue

183

184 # User selected a number that's not currently displays on

top 20 list (cheat)

185 if not found:

186 for row2 in enumerate(myRatedDatabase.values):

187 MOVIE_INDEX = row2[0]

188 MOVIE_NAME = row2[1][0]

189 MOVIE_ID = row2[1][1]

190 if (MOVIE_INDEX == 0):

191 continue

192 if choice == int(MOVIE_ID):

193 TAINIA = MOVIE_NAME

194 found = True

195 break

196 else:

197 continue

198

199 if not found:

200 print "Internal error. I cannot find the movie with

such ID."

201 exit(2)

202

203

204

205 # User input: Ask the to rate the selected movie

206 # ---

207

208 rate = get_user_rating(TAINIA)

209 print 'You rated ', TAINIA, ' with ', rate

210

211

212

 -136-

213 # Record the user's opinion into the database (aka

ratingmatrix)

214 # ---

--

215 df = pd.DataFrame([[long(userID), long(choice),

long(rate)]], columns=('userId', 'itemId', 'rating'))

216 ratingsmatrix.loc[len(ratingsmatrix)] = df.loc[0]

217

218

219

220 # Keep voting until 20 Movies

221 # ---

222 cnt += 1

223

224 print '\n\nPlease Wait . . .\n\n'

225 return ratingsmatrix

226

227

228

229 def myBestMovies(me,N):

230

231 topNMovies=pd.DataFrame.sort_values(

232

myUserDatabase[myUserDatabase.userId==me],['rating'],ascending=[0])[:N

]

233

234 return list(topNMovies.title)

235

236

237

238 def correlation(u,v):

239 umu = u.mean()

240 vmu = v.mean()

241 um = u - umu

242 vm = v - vmu

243 dist = 1.0 - np.dot(um, vm) / (LA.norm(um) * LA.norm(vm))

244 return dist

245

246

247 def userPairSimilarity(user1, user2):

248 user1 = np.array(user1) - np.nanmean(user1)

249 user2 = np.array(user2) - np.nanmean(user2)

250

251

252 commonMovies = [i for i in range(len(user1)) if user1[i] > 0

and user2[i] > 0]

253 # Gives us movies for which both users have non NaN ratings

254 if len(commonMovies) == 0:

255 # if there are no common movies that both users have

rated then it returns 0

256 return 0

257 else:

258 user1 = np.array([user1[i] for i in commonMovies])

259 user2 = np.array([user2[i] for i in commonMovies])

260 return correlation(user1, user2)

261

262

263

264

265 def nearestNeighbourPredictions(user, K):

 -137-

266

267 similarities = pd.DataFrame(index=userVectorMatrix.index,

268 columns=['Similarity'])

269 for i in userVectorMatrix.index:

270 similarities.loc[i] =

userPairSimilarity(userVectorMatrix.loc[user],

userVectorMatrix.loc[i])

271 similarities = pd.DataFrame.sort_values(similarities,

['Similarity'], ascending=[0])

272 nearestNeighbours = similarities[:K]

273 neighbourVectors =

userVectorMatrix.loc[nearestNeighbours.index]

274 predictRating = pd.DataFrame(index=userVectorMatrix.columns,

columns=['Rating'])

275 for i in userVectorMatrix.columns:

276 prediction = np.nanmean(userVectorMatrix.loc[user])

277 for j in neighbourVectors.index:

278 # for each neighbour in the neighbour list

279 if userVectorMatrix.loc[j, i] > 0:

280 prediction += (userVectorMatrix.loc[j, i]

281 -

np.nanmean(userVectorMatrix.loc[j])) * nearestNeighbours.loc[j,

'Similarity']

282 predictRating.loc[i, 'Rating'] = prediction

283 return predictRating

284

285

286

287 def finalNRecommendations(user, N, movieNum, genreNum):

288

289 predictRating = nearestNeighbourPredictions(user, neighbours)

290 #print 'KNN predictions ', predictRating

291 moviesRated = list(userVectorMatrix.loc[user]

292 .loc[userVectorMatrix.loc[user] >

0].index)

293 noGenreList = []

294 for i in range(0, movieNum):

295 cnt = 0

296 for j in range(0, genreNum):

297 if myItemDatabase.loc[i][j + 2] == 1:

298 cnt = cnt + 1

299 if cnt == 0:

300 noGenreList.append(predictRating.index.get_loc(i+1))

301

302 noGenreList = set(noGenreList) - set(moviesRated) #remove the

movies that exist inside the moviesRated list

303 predictRating = predictRating.drop(noGenreList)

304 predictRating = predictRating.drop(moviesRated)

305 finalRecommendations =

pd.DataFrame.sort_values(predictRating, ['Rating'], ascending=[0])[:N]

306 titles =

(myItemDatabase.loc[myItemDatabase.itemId.isin(finalRecommendations.in

dex)])

307 return list(titles.title)

308

309

310 def RatingsNormalized(user):

311

312 predictRating = nearestNeighbourPredictions(user, neighbours)

313 #print ("5050 preds "), predictRating

314 maximum = predictRating.iloc[:, 0].dropna().max()

 -138-

315 minimum = predictRating.iloc[:, 0].dropna().min()

316

317 b = 0

318 if minimum < 0:

319 b = -minimum + 0

320 maximum = maximum - minimum

321 minimum = minimum - minimum

322

323 for i in predictRating.index:

324 predictRating.loc[i] = predictRating.loc[i] + b

325 predictRating.loc[i] = predictRating.loc[i] * (5 /

maximum)

326 predictRating.loc[i] = 5 - predictRating.loc[i]

327 return predictRating

328

329 def knnPersonality5050(genreSum, myItemDatabase, movieNum,

genreNum, normalizedTable):

330 normalizedTable2 = normalizedTable.copy(deep=1)

331 for i in range(0, movieNum):

332 cnt = 0

333 sum = 0

334 for j in range(0, genreNum):

335 sum = sum + myItemDatabase.loc[i][j + 2] *

genreSum.loc[j, 0]

336 if myItemDatabase.loc[i][j + 2] == 1:

337 cnt = cnt + 1

338 if cnt != 0:

339 sum = sum / cnt

340 normalizedTable2.loc[i + 1] = (normalizedTable.loc[i

+ 1] + sum) / 2

341 else:

342 normalizedTable2.loc[i + 1] = 5

343

344 return normalizedTable2

345

346 def knnPersonality8020(genreSum, myItemDatabase, movieNum,

genreNum, normalizedTable):

347 normalizedTable3 = normalizedTable.copy(deep=1)

348 for i in range(0, movieNum):

349 cnt = 0

350 sum = 0

351 for j in range(0, genreNum):

352 sum = sum + myItemDatabase.loc[i][j + 2] *

genreSum.loc[j, 0]

353 if myItemDatabase.loc[i][j + 2] == 1:

354 cnt = cnt + 1

355 if cnt != 0:

356 sum = sum / cnt

357 normalizedTable3.loc[i + 1] = (normalizedTable.loc[i

+ 1] * 0.2) + (sum * 0.8)

358 else:

359 normalizedTable3.loc[i + 1] = 5

360

361 return normalizedTable3

362

363

364 def finalNRecommendationsPersonality(tab, user, N):

365 moviesRated = list(userVectorMatrix.loc[user]

366 .loc[userVectorMatrix.loc[user] >

0].index)

367

 -139-

368

369 tabRated = tab.drop(moviesRated)

370

371 finalRecommendations = pd.DataFrame.sort_values(tabRated,

372 ['Rating'],

ascending=[1])[:N]

373

374 titles =

(myItemDatabase.loc[myItemDatabase.itemId.isin(finalRecommendations.in

dex)])

375 return list(titles.title)

376

377

378

379

##

380 # Basic tests # If one of the following tests fails, then exit

the programm immediatelly #

381

##

382

383 exit_if_data_are_not_found()

384

385

386

387 ############

388 ### Main ###

389 ############

390

391 myUserDatabase = pd.read_csv(movieLensFile, sep="\t",

header=None, names=['userId', 'itemId', 'rating'], usecols=[0, 1, 2])

392 myUserDatabase = newUser(myUserDatabase)

393 myItemDatabase=pd.read_csv(movieLensItemFile,sep="|",

header=None, names=['itemId','title', 'Action',' Adventure',

'Animation', 'Cartoon', 'Comedy','Drama', 'Film-Noir', 'Horror',

'Romance', 'Sci-Fi', 'War'],

usecols=[0,1,6,7,8,9,10,13,15,16,19,20,22])

394

myUserDatabase=pd.merge(myUserDatabase,myItemDatabase,left_on='itemId'

,right_on="itemId")

395 userVectorMatrix=pd.pivot_table(myUserDatabase, values='rating',

index=['userId'], columns=['itemId'])

396 userID = 944;

397 neighbours=50

398

399 a = 0

400 c = 0

401 o = 0

402 e = 0

403 n = 0

404 while(True):

405 print '\nWELCOME TO THE BIG FIVE PERSONALITY TEST\n\n'

406 s='This is a personality test to help us understand how your

personality is structured and find the best movie recommendations for

you.'

407 l='Please answer all the following questions with a number in

the range of 1-5, where 1=disagree, 2=slightly disagree, 3=neutral,

4=slightly agree and 5=agree.'

408 print s

 -140-

409 print l

410

411 print '\n\nAnswer the following questions, with the prefix "I

think that.."\n\n\n'

412 q = 'I am the life of the party.'

413

414 while (True):

415 try:

416 num = int(raw_input(q + '\n'))

417 except ValueError:

418 print 'Wrong input, please try again'

419 continue

420 if (num<1 or num>5):

421 print 'Value must be in the range 1-5: Try again.'

422 continue

423 break

424 e = e+num

425

426

427 q = 'I feel little concern for others.'

428 while (True):

429 try:

430 num = int(raw_input(q + '\n'))

431 except ValueError:

432 print 'Wrong input, please try again'

433 continue

434 if (num<1 or num>5):

435 print 'Value must be in the range 1-5: Try again.'

436 continue

437 break

438 a = a-num

439

440 q = 'I am always prepared.'

441 while (True):

442 try:

443 num = int(raw_input(q + '\n'))

444 except ValueError:

445 print 'Wrong input, please try again'

446 continue

447 if (num<1 or num>5):

448 print 'Value must be in the range 1-5: Try again.'

449 continue

450 break

451 c = c+num

452

453 q = 'I get stressed out easily.'

454 while (True):

455 try:

456 num = int(raw_input(q + '\n'))

457 except ValueError:

458 print 'Wrong input, please try again'

459 continue

460 if (num<1 or num>5):

461 print 'Value must be in the range 1-5: Try again.'

462 continue

463 break

464 n = n-num

465

466 q = 'I have a rich vocabulary.'

467 while (True):

468 try:

 -141-

469 num = int(raw_input(q + '\n'))

470 except ValueError:

471 print 'Wrong input, please try again'

472 continue

473 if (num<1 or num>5):

474 print 'Value must be in the range 1-5: Try again.'

475 continue

476 break

477 o = o+num

478

479 q = 'I do not talk a lot.'

480 while (True):

481 try:

482 num = int(raw_input(q + '\n'))

483 except ValueError:

484 print 'Wrong input, please try again'

485 continue

486 if (num<1 or num>5):

487 print 'Value must be in the range 1-5: Try again.'

488 continue

489 break

490 e = e-num

491

492 q = 'I am interested in people.'

493 while (True):

494 try:

495 num = int(raw_input(q + '\n'))

496 except ValueError:

497 print 'Wrong input, please try again'

498 continue

499 if (num<1 or num>5):

500 print 'Value must be in the range 1-5: Try again.'

501 continue

502 break

503 a = a+num

504

505 q = 'I leave my belongings around.'

506 while (True):

507 try:

508 num = int(raw_input(q + '\n'))

509 except ValueError:

510 print 'Wrong input, please try again'

511 continue

512 if (num<1 or num>5):

513 print 'Value must be in the range 1-5: Try again.'

514 continue

515 break

516 c = c-num

517

518 q = 'I am relaxed most of the time.'

519 while (True):

520 try:

521 num = int(raw_input(q + '\n'))

522 except ValueError:

523 print 'Wrong input, please try again'

524 continue

525 if (num<1 or num>5):

526 print 'Value must be in the range 1-5: Try again.'

527 continue

528 break

529 n = n+num

 -142-

530

531 q = 'I have difficulty understanding abstract ideas.'

532 while (True):

533 try:

534 num = int(raw_input(q + '\n'))

535 except ValueError:

536 print 'Wrong input, please try again'

537 continue

538 if (num<1 or num>5):

539 print 'Value must be in the range 1-5: Try again.'

540 continue

541 break

542 o = o-num

543

544 q = 'I feel comfortable around people.'

545 while (True):

546 try:

547 num = int(raw_input(q + '\n'))

548 except ValueError:

549 print 'Wrong input, please try again'

550 continue

551 if (num<1 or num>5):

552 print 'Value must be in the range 1-5: Try again.'

553 continue

554 break

555 e = e+num

556

557 q = 'I insult people.'

558 while (True):

559 try:

560 num = int(raw_input(q + '\n'))

561 except ValueError:

562 print 'Wrong input, please try again'

563 continue

564 if (num<1 or num>5):

565 print 'Value must be in the range 1-5: Try again.'

566 continue

567 break

568 a = a-num

569

570 q = 'I pay attention to details.'

571 while (True):

572 try:

573 num = int(raw_input(q + '\n'))

574 except ValueError:

575 print 'Wrong input, please try again'

576 continue

577 if (num<1 or num>5):

578 print 'Value must be in the range 1-5: Try again.'

579 continue

580 break

581 c = c+num

582

583

584 q = 'I worry about things.'

585 while (True):

586 try:

587 num = int(raw_input(q + '\n'))

588 except ValueError:

589 print 'Wrong input, please try again'

590 continue

 -143-

591 if (num<1 or num>5):

592 print 'Value must be in the range 1-5: Try again.'

593 continue

594 break

595 n = n-num

596

597 q = 'I have a vivid imagination.'

598 while (True):

599 try:

600 num = int(raw_input(q + '\n'))

601 except ValueError:

602 print 'Wrong input, please try again'

603 continue

604 if (num<1 or num>5):

605 print 'Value must be in the range 1-5: Try again.'

606 continue

607 break

608 o = o+num

609

610 q = 'I keep in the background.'

611 while (True):

612 try:

613 num = int(raw_input(q + '\n'))

614 except ValueError:

615 print 'Wrong input, please try again'

616 continue

617 if (num<1 or num>5):

618 print 'Value must be in the range 1-5: Try again.'

619 continue

620 break

621 e = e-num

622

623

624 q = 'I sympathize with others feelings.'

625 while (True):

626 try:

627 num = int(raw_input(q + '\n'))

628 except ValueError:

629 print 'Wrong input, please try again'

630 continue

631 if (num<1 or num>5):

632 print 'Value must be in the range 1-5: Try again.'

633 continue

634 break

635 a = a+num

636

637

638 q = 'I make a mess of things.'

639 while (True):

640 try:

641 num = int(raw_input(q + '\n'))

642 except ValueError:

643 print 'Wrong input, please try again'

644 continue

645 if (num<1 or num>5):

646 print 'Value must be in the range 1-5: Try again.'

647 continue

648 break

649 c = c-num

650

651 q = 'I seldom feel blue.'

 -144-

652 while (True):

653 try:

654 num = int(raw_input(q + '\n'))

655 except ValueError:

656 print 'Wrong input, please try again'

657 continue

658 if (num<1 or num>5):

659 print 'Value must be in the range 1-5: Try again.'

660 continue

661 break

662 n = n+num

663

664 q = 'I am not interested in abstract ideas.'

665 while (True):

666 try:

667 num = int(raw_input(q + '\n'))

668 except ValueError:

669 print 'Wrong input, please try again'

670 continue

671 if (num<1 or num>5):

672 print 'Value must be in the range 1-5: Try again.'

673 continue

674 break

675 o = o-num

676

677

678 q = 'I start conversations.'

679 while (True):

680 try:

681 num = int(raw_input(q + '\n'))

682 except ValueError:

683 print 'Wrong input, please try again'

684 continue

685 if (num<1 or num>5):

686 print 'Value must be in the range 1-5: Try again.'

687 continue

688 break

689 e = e+num

690

691 q = 'I am not interested in other peoples problems.'

692 while (True):

693 try:

694 num = int(raw_input(q + '\n'))

695 except ValueError:

696 print 'Wrong input, please try again'

697 continue

698 if (num<1 or num>5):

699 print 'Value must be in the range 1-5: Try again.'

700 continue

701 break

702 a = a-num

703

704

705 q = 'I get chores done right away.'

706 while (True):

707 try:

708 num = int(raw_input(q + '\n'))

709 except ValueError:

710 print 'Wrong input, please try again'

711 continue

712 if (num<1 or num>5):

 -145-

713 print 'Value must be in the range 1-5: Try again.'

714 continue

715 break

716 c = c+num

717

718 q = 'I am easily disturbed.'

719 while (True):

720 try:

721 num = int(raw_input(q + '\n'))

722 except ValueError:

723 print 'Wrong input, please try again'

724 continue

725 if (num<1 or num>5):

726 print 'Value must be in the range 1-5: Try again.'

727 continue

728 break

729 n = n-num

730

731

732 q = 'I have excellent ideas.'

733 while (True):

734 try:

735 num = int(raw_input(q + '\n'))

736 except ValueError:

737 print 'Wrong input, please try again'

738 continue

739 if (num<1 or num>5):

740 print 'Value must be in the range 1-5: Try again.'

741 continue

742 break

743 o = o+num

744

745 q = 'I have little to say.'

746 while (True):

747 try:

748 num = int(raw_input(q + '\n'))

749 except ValueError:

750 print 'Wrong input, please try again'

751 continue

752 if (num<1 or num>5):

753 print 'Value must be in the range 1-5: Try again.'

754 continue

755 break

756 e = e-num

757

758 q = 'I have a soft heart.'

759 while (True):

760 try:

761 num = int(raw_input(q + '\n'))

762 except ValueError:

763 print 'Wrong input, please try again'

764 continue

765 if (num<1 or num>5):

766 print 'Value must be in the range 1-5: Try again.'

767 continue

768 break

769 a = a+num

770

771

772 q = 'I often forget to put things back in their proper

place.'

 -146-

773 while (True):

774 try:

775 num = int(raw_input(q + '\n'))

776 except ValueError:

777 print 'Wrong input, please try again'

778 continue

779 if (num<1 or num>5):

780 print 'Value must be in the range 1-5: Try again.'

781 continue

782 break

783 c = c-num

784

785 q = 'I get upset easily.'

786 while (True):

787 try:

788 num = int(raw_input(q + '\n'))

789 except ValueError:

790 print 'Wrong input, please try again'

791 continue

792 if (num<1 or num>5):

793 print 'Value must be in the range 1-5: Try again.'

794 continue

795 break

796 n = n-num

797

798

799 q = 'I do not have a good imagination.'

800 while (True):

801 try:

802 num = int(raw_input(q + '\n'))

803 except ValueError:

804 print 'Wrong input, please try again'

805 continue

806 if (num<1 or num>5):

807 print 'Value must be in the range 1-5: Try again.'

808 continue

809 break

810 o = o-num

811

812 q = 'I talk to a lot of different people at parties.'

813 while (True):

814 try:

815 num = int(raw_input(q + '\n'))

816 except ValueError:

817 print 'Wrong input, please try again'

818 continue

819 if (num<1 or num>5):

820 print 'Value must be in the range 1-5: Try again.'

821 continue

822 break

823 e = e+num

824

825 q = 'I am not really interested in others.'

826 while (True):

827 try:

828 num = int(raw_input(q + '\n'))

829 except ValueError:

830 print 'Wrong input, please try again'

831 continue

832 if (num<1 or num>5):

833 print 'Value must be in the range 1-5: Try again.'

 -147-

834 continue

835 break

836 a = a-num

837

838

839 q = 'I like order.'

840 while (True):

841 try:

842 num = int(raw_input(q + '\n'))

843 except ValueError:

844 print 'Wrong input, please try again'

845 continue

846 if (num<1 or num>5):

847 print 'Value must be in the range 1-5: Try again.'

848 continue

849 break

850 c = c+num

851

852

853 q = 'I change my mood a lot.'

854 while (True):

855 try:

856 num = int(raw_input(q + '\n'))

857 except ValueError:

858 print 'Wrong input, please try again'

859 continue

860 if (num<1 or num>5):

861 print 'Value must be in the range 1-5: Try again.'

862 continue

863 break

864 n = n-num

865

866

867 q = 'I am quick to understand things.'

868 while (True):

869 try:

870 num = int(raw_input(q + '\n'))

871 except ValueError:

872 print 'Wrong input, please try again'

873 continue

874 if (num<1 or num>5):

875 print 'Value must be in the range 1-5: Try again.'

876 continue

877 break

878 o = o+num

879

880 q = 'I do not like to draw attention to myself.'

881 while (True):

882 try:

883 num = int(raw_input(q + '\n'))

884 except ValueError:

885 print 'Wrong input, please try again'

886 continue

887 if (num<1 or num>5):

888 print 'Value must be in the range 1-5: Try again.'

889 continue

890 break

891 e = e-num

892

893 q = 'I take time out for others.'

894 while (True):

 -148-

895 try:

896 num = int(raw_input(q + '\n'))

897 except ValueError:

898 print 'Wrong input, please try again'

899 continue

900 if (num<1 or num>5):

901 print 'Value must be in the range 1-5: Try again.'

902 continue

903 break

904 a = a+num

905

906

907 q = 'I shirk my duties.'

908 while (True):

909 try:

910 num = int(raw_input(q + '\n'))

911 except ValueError:

912 print 'Wrong input, please try again'

913 continue

914 if (num<1 or num>5):

915 print 'Value must be in the range 1-5: Try again.'

916 continue

917 break

918 c = c-num

919

920

921 q = 'I have frequent mood swings.'

922 while (True):

923 try:

924 num = int(raw_input(q + '\n'))

925 except ValueError:

926 print 'Wrong input, please try again'

927 continue

928 if (num<1 or num>5):

929 print 'Value must be in the range 1-5: Try again.'

930 continue

931 break

932 n = n-num

933

934

935 q = 'I use difficult words.'

936 while (True):

937 try:

938 num = int(raw_input(q + '\n'))

939 except ValueError:

940 print 'Wrong input, please try again'

941 continue

942 if (num<1 or num>5):

943 print 'Value must be in the range 1-5: Try again.'

944 continue

945 break

946 o = o+num

947

948 q = 'I do not mind being the center of attention.'

949 while (True):

950 try:

951 num = int(raw_input(q + '\n'))

952 except ValueError:

953 print 'Wrong input, please try again'

954 continue

955 if (num<1 or num>5):

 -149-

956 print 'Value must be in the range 1-5: Try again.'

957 continue

958 break

959 e = e+num

960

961

962 q = 'I feel others emotions.'

963 while (True):

964 try:

965 num = int(raw_input(q + '\n'))

966 except ValueError:

967 print 'Wrong input, please try again'

968 continue

969 if (num<1 or num>5):

970 print 'Value must be in the range 1-5: Try again.'

971 continue

972 break

973 a = a+num

974

975

976 q = 'I follow a schedule.'

977 while (True):

978 try:

979 num = int(raw_input(q + '\n'))

980 except ValueError:

981 print 'Wrong input, please try again'

982 continue

983 if (num<1 or num>5):

984 print 'Value must be in the range 1-5: Try again.'

985 continue

986 break

987 c = c+num

988

989

990 q = 'I get irritated easily.'

991 while (True):

992 try:

993 num = int(raw_input(q + '\n'))

994 except ValueError:

995 print 'Wrong input, please try again'

996 continue

997 if (num<1 or num>5):

998 print 'Value must be in the range 1-5: Try again.'

999 continue

1000 break

1001 n = n-num

1002

1003

1004 q = 'I spend time reflecting on things.'

1005 while (True):

1006 try:

1007 num = int(raw_input(q + '\n'))

1008 except ValueError:

1009 print 'Wrong input, please try again'

1010 continue

1011 if (num<1 or num>5):

1012 print 'Value must be in the range 1-5: Try again.'

1013 continue

1014 break

1015 o = o+num

1016

 -150-

1017 q = 'I am quiet around strangers.'

1018 while (True):

1019 try:

1020 num = int(raw_input(q + '\n'))

1021 except ValueError:

1022 print 'Wrong input, please try again'

1023 continue

1024 if (num<1 or num>5):

1025 print 'Value must be in the range 1-5: Try again.'

1026 continue

1027 break

1028 e = e-num

1029

1030 q = 'I make people feel at ease.'

1031 while (True):

1032 try:

1033 num = int(raw_input(q + '\n'))

1034 except ValueError:

1035 print 'Wrong input, please try again'

1036 continue

1037 if (num<1 or num>5):

1038 print 'Value must be in the range 1-5: Try again.'

1039 continue

1040 break

1041 a = a+num

1042

1043

1044 q = 'I am exacting in my work.'

1045 while (True):

1046 try:

1047 num = int(raw_input(q + '\n'))

1048 except ValueError:

1049 print 'Wrong input, please try again'

1050 continue

1051 if (num<1 or num>5):

1052 print 'Value must be in the range 1-5: Try again.'

1053 continue

1054 break

1055 c = c+num

1056

1057 q = 'I often feel blue.'

1058 while (True):

1059 try:

1060 num = int(raw_input(q + '\n'))

1061 except ValueError:

1062 print 'Wrong input, please try again'

1063 continue

1064 if (num<1 or num>5):

1065 print 'Value must be in the range 1-5: Try again.'

1066 continue

1067 break

1068 n = n-num

1069

1070

1071 q = 'I am full of ideas.'

1072 while (True):

1073 try:

1074 num = int(raw_input(q + '\n'))

1075 except ValueError:

1076 print 'Wrong input, please try again'

1077 continue

 -151-

1078 if (num<1 or num>5):

1079 print 'Value must be in the range 1-5: Try again.'

1080 continue

1081 break

1082 o = o+num

1083

1084

1085

1086 agreeableness_final = (24 + a)/10.0

1087 openness_final = (18 + o)/10.0

1088 conscientiousness_final =(24 + c)/10.0

1089 extraversion_final = (30 + e)/10.0

1090 neuroticism_final = (48 + n)/10.0

1091 print '\n\n'

1092

1093 print "Extraversion=", extraversion_final

1094

1095 print "Agreeableness=", agreeableness_final

1096

1097 print "conscientiousness=", conscientiousness_final

1098

1099 print "neuroticism=", neuroticism_final

1100

1101 print "openness=", openness_final

1102 print '\n'

1103

1104

1105 print ("THANK YOU FOR FILLING THE BIG FIVE QUESTIONAIRE. ")

1106 break

1107 #execfile('Analyzer.py')

1108 print 'Please Wait . . .'

1109

1110

1111

1112

1113

1114

1115

1116

myFiveFactorDatabase=pd.read_csv(FiveFactorFile,sep=",",header=None,

1117 names=['MOVIE

GENRE','OPE','CON','EXT','AGR','NEU'], usecols=[0,1,2,3,4,5])

1118

1119

1120 myFiveFactorDatabase.loc[:, 'OPE']-=openness_final

1121 myFiveFactorDatabase.loc[:, 'OPE'] = myFiveFactorDatabase.loc[:,

'OPE'].abs()

1122 myFiveFactorDatabase.loc[:, 'CON']-=conscientiousness_final

1123 myFiveFactorDatabase.loc[:, 'CON'] = myFiveFactorDatabase.loc[:,

'CON'].abs()

1124 myFiveFactorDatabase.loc[:, 'EXT']-=extraversion_final

1125 myFiveFactorDatabase.loc[:, 'EXT'] = myFiveFactorDatabase.loc[:,

'EXT'].abs()

1126 myFiveFactorDatabase.loc[:, 'AGR']-=agreeableness_final

1127 myFiveFactorDatabase.loc[:, 'AGR'] = myFiveFactorDatabase.loc[:,

'AGR'].abs()

1128 myFiveFactorDatabase.loc[:, 'NEU']-=neuroticism_final

1129 myFiveFactorDatabase.loc[:, 'NEU'] = myFiveFactorDatabase.loc[:,

'NEU'].abs()

1130

1131 numbah = myFiveFactorDatabase.sum(axis=1, numeric_only=True)

 -152-

1132 numbahNames = myFiveFactorDatabase.loc[:, 'MOVIE GENRE']

1133

1134 genreSum=pd.concat([numbahNames, numbah], axis=1)

1135

1136 normalizedTable=RatingsNormalized(userID)

1137

1138

1139

1140

1141

1142

1143 tab = knnPersonality5050(genreSum, myItemDatabase, 1682, 11,

normalizedTable)

1144

1145

1146

1147

1148 tab2 = knnPersonality8020(genreSum, myItemDatabase, 1682, 11,

normalizedTable)

1149

1150

1151

1152

1153

1154 print nearestNeighbourPredictions(userID, neighbours)

1155

1156

1157

1158 #print 'Your highest rated movies are: \n', myBestMovies(userID,

10)

1159 l5050 = finalNRecommendationsPersonality(tab, userID, 10)

1160 print '50/50 recomendations:'

1161 for i in l5050:

1162 print(i)

1163 print '\n\n'

1164 lknn = finalNRecommendations(userID, 10, 1682, 11) #knn

1165 print 'KNN recomendations:'

1166 for i in lknn:

1167 print(i)

1168 print '\n\n'

1169 l8020 = finalNRecommendationsPersonality(tab2, userID, 10) #80/20

1170 print '80/20 recomendations:'

1171 for i in l8020:

1172 print(i)

1173 print '\n\nPress Enter to Exit . . .'

1174 useless = (raw_input())

1175

